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ABSTRACT

The history and practice of the lunar distance method
are described, with special emphasis on its use in the
nineteenth century. It is only in the first half of the last
century that lunars were widely practiced. The story of
Captain Joshua Slocum, the first solitary
circumnavigator, is described in some detail. His lunar
observation in 1896 was made in its original form, with
nothing but the moon as a clock. A simulation of his
observations and their reduction by the means available
to the nineteenth-century navigator are described, and a
short review of these methods is presented.
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HISTORY AND PREHISTORY OF THE LUNAR
DISTANCE METHQD

From the early beginning of voyages across the
oceans, the determination of latitude has not been
a problem: the Portuguese had introduced the
marine astrolabe, which permitted altitudes to be
taken at meridian passage with an accuracy of
0.5 deg, and the sun’s declination tables [1] were
accurate within a few minutes.

The situation for longitude was different. Ships
often found themselves more than 10 deg off from
their dead-reckoned positions and sometimes much
more. The only time they knew was the local time,
which they could tell from the sun. But in
addition, the time at some standard meridian was
needed as a reference to find the longitude. This
problem would be solved if only one had a clock
that could be regulated to keep the time at some
standard meridian. The time of the sun’s meridian
passage, local noon, read off on such a clock would
then tell the longitude.

The notion that the moon could be used as a
clock must have already existed among sailors at
that time: the first attempt to find the longitude by
the lunar distance is said to have been made by
Amerigo Vespucci in 1499. He was aboard with
Columbus on his third voyage to America as.
cartographer. Possibly also Magelhaes tried it,
during his voyage around the world (1519-1521).

Whether this is truth or merely saga, we do not
know: there were no records kept. But even if such
observations had been made, the mariners of
around 1500 could not have deduced their
longitude because of their lack of the required
mathematical background. -

In the beginning of the sixteenth century,
mathematicians, astronomers, and cartographers,
notably Gemma Frisius (1508-1555) [2], had
advanced the mathematics of spherical
triangulation to the point that they could
realistically suggest obtaining the time and thus
the longitude at sea from a measurement of the
distance between the moon and the sun or a
planet or a fixed star.

The moon loses a full circle to the sun in
29.5 days. In the navigator’s geocentric world,
their directions are like the hands of a giant clock,
the angle between them changing by 30.5"/min. If
the positions of the moon could be predicted well
enough and sufficiently in advance, the angle
between it and the sun, the [unar distance, might
be tabulated in the time of some standard
meridian. The moon would then be a perfect,
never-failing clock. In those days, the motion of
the moon was not well enough understood, nor did
the navigational instruments have sufficient
accuracy. Yet considerable effort was put into



establishing lunar tables for nautical use. A
decisive step was made when Isaac Newton
established the law of gravitation [3]. It gave the
necessary scientific background to the calculation
of the motion of celestial bodies, which before had
been merely phenomenoclogy. Still it was only in
the second half of the eighteenth century, mostly
through the work of German astronomers such as
Johann Tobias Mayer of Gottingen (1723-1762),
that lunar distances could be predicted with errors
no larger than 1 arcmin. By that time the sextant
was already in use.

It was Nevil Maskelyne who published the first
systematic tabulation of lunar distances, which
was based on Mayer’s tables [4].

Eight years earlier, in 1759, John Harrison had
succeeded in making the first useful marine
chronometer, for which he was rewarded with
£20,000 by the British Government. Not long after,
the French clockmaker Berthoud was also able to
produce a reliable timekeeper.

And so, within a few years, two methods had
become available by which longitude at sea could
be obtained. The problem of longitude had finally
been solved. A good survey of the history of time
measurement is given by Derek Howse [5].

In the beginning, chronometers could not be
produced in large quantities, and in the following
years the lunar distance was the more widely used
method. James Cook, on his voyage with the
Endeavour, was one of the first users. For doing
the elaborate calculations necessary to deduce the
time from the observed lunar distance, he had the
help of an astronomer, appointed to this task by
the Government.

PRINCIPLE AND PRACTICE OF THE LUNAR
DISTANCE METHOD

Deducing the time and the longitude from a
lunar observation, or lunar for short, is a
complicated procedure. The scheme of the solution
is, however, simple and is illustrated in Figure 1:

1) From position (Z) the observer measures the
apparent lunar distance between the bright
limbs (d"), the lower-limb altitude (H") of the
sun, and the lower-limb altitude (h") of the
moon. The altitudes must be reduced to their
values at the observation time of the lunar
distance, either by calculation or by
interpolation of several observations. Ideally
the three measurements should be taken
simultaneously by three different observers,
at the moment indicated by the person who
takes the lunar distance, while a fourth
person reads the chronometer. For a single
observer, Bowditch [6] recommends taking
both altitudes twice, first preceding the
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Fig. 1—Slocum’s Lunar Distance Observation (The situation
at the time of Slocum’s lunar distance observation near the
Marquesas on June 16, 1896. Positions are shown, projected
onto the surface of the earth, in an outward-in view. P is
{North} pole, 8’ is apparent sun, M' is apparent moon, S is
true sun, M is true moon, Z is the observer’s zenith.)

observation of the lunar distance and
thereafter once more and in reverse order,
noting the chronometer time of each
observation, Raper [7] makes a further
recommendation that the altitudes of the
object farthest from the meridian should be
taken as the first and the last. The measured’
quantities are first corrected for
semidiameters. The altitudes are also
corrected for dip to give the apparent
altitudes H’ and h’. The apparent zenith
distances ZS' = 90° — H' and ZM' = 90°
— h’, together with the apparent lunar
distance d’, fix the triangle ZS'M'.

2) The apparent altitudes must be further
corrected for refraction and for parallax to
give the true altitudes H and h. These are
both “vertical” corrections, which do not
influence the enclosed azimythal angle, so
that Zgy = Zgy. This is the crux that makes
the lunar distance method work: the
spherical triangle ZSM is fixed, and the true
lunar distance, d = SM, follows.

3) With d known, the Greenwich mean time
(GMT) is found by interpolation in the lunar
distance tables.

4) GMT being known, the declinations of the
sun and the moon can be locked up in the
Almanac. With the latitude adopted from the
last meridian passage and dead reckoning,
their local hour angles are found from the
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triangles PSZ and PMZ, respectively; the
longitude follows as LONG = GHA-LHA.

Until the year 1834, the Almanac gave all
quantities in apparent time, which is immediately
obtained from the sun’s position. In order to make
the Almanac also suitable for astronomical use,
the ephemerides were given in astronomical mean
time from 1834 on. The beginning of the
astronomical day was taken to be the Greenwich
meridian passage of the mean sun, while the civil
day started 12 h earlier, at midnight. In 1925 the
astronomical day was redefined to coincide with
the civil day.

In the appendix, the interested reader will find a
simulation of Joshua Slocum’s [8] observation from
June 16, 1896, using the methods that were
available to the late eighteenth- and nineteenth-
century navigator. Part of this simulation has
appeared in an earlier publication [9]. Before the
end of the eighteenth century, different
mathematical reduction procedures for lunar
distances were introduced by Lyons, Dunthorne,
Maskelyne, Krafft, and de Borda. De Borda’s
method has long been considered the best. During
the first half of the nineteenth century, many more
methods were introduced which aimed at reducing
the calculational burden by the use of tables. For
example, one finds four different procedures in the
1849 edition of Nathaniél Bowditch’s famous
handbook [6].

During the nineteenth century, chronometers
became generally available. It became common
practice to use the lunar distance method to find
the chronometer’s correction and rate, thus
keeping it regulated at the standard time. The
obvious advantage was that the fourth step, the
determination of the local time, might then be
done at any other instant.

Already by the middle of the nineteenth century,
ships would generally have been equipped with
several chronometers. Because the time at sea
between ports also became shorter, the
chronometer time became more reliable than what
could be achieved from a lunar distance
observation. This meant that lunars were only
seldom used in the second half of the nineteenth
century. In his handbook [10], published for the
first time in 1881 and reprinted almost yearly, -
Captain Lecky (1838—1902) stated: “The writer of
these pages, during a long experience at sea in all
manner of vessels ..., has not fallen in with a
dozen men who had themselves taken Lunars, or
even had seen them taken.”

In 1902 a review of the history of lunar
observation by E. Guyou, member of the French
Bureau de Longitude, appeared in La Revue
Maritime [11]. In this article it was announced
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that the publication of lunar distance tables in the
Connaissance du Temps would be stopped from
1905. The Nautical Almanac continued to publish
lunar distances until 1907. It is, therefore, all the
more interesting that maybe the best known lunar
observation, if not in history then in literature,
was made as late as 1896.

JOSHUA SLOCUM'S OBSERVATION ON
JUNE 16, 1896

On April 24, 1895, Captain Joshua Slocum set
out on his voyage that was to become the first
solitary circumnavigation of the globe. His account
of this enterprise [8] has become a classic. Figure 2
shows a portrait of Slocum from the 1949 edition.

His book is also interesting because it tells the
story of a very keen self-made navigator and
literate man, but with no formal education in
navigation. There were many like him in the
second half of the nineteenth century, captain-
owners of sailing ships. Crews were small in those
times, especially because of the increasing
competition of engine-driven vessels, and often
these captains would be the only ones aboard with
navigational knowledge. This forms a contrast
with earlier times when trade across the oceans
was the exclusive domain of larger companies,
such as the Dutch East and West Indian
Companies, which saw to it that crews should
count among them a sufficient number of men
with a proper education. _

Slecum has become the Adam figure for
yachtsmen, and even today we are still fascinated

CAPTAIN JOSHUA SLOCUM

Fig. 2—Captain Joshua Slocum (Pen drawing by A. E. Berbank
from Sailing Alone Around the World, The Reprint Society,
London [1949])
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by the question of how he navigated. From his
time as captain-owner of a moderately large
sailing ship, he had kept a chronometer. However,
it needed repairing, which would have cost $15.00,
an amount Slocum was reluctant to spend.
Nevertheless he stated: “In our newfangled notions
of navigation it is supposed that a mariner cannot
find his way without one; and I had myself drifted
into this way of thinking.” He found a compromise
and bought an old tin clock, discounted from $1.50
to $1.00.

About his navigation on the Atlantic crossings,
Slocum gives little detail. It appears that he
limited himself to meridian altitudes: “On
September 10 the Spray passed the island of St.
Antonio, the northwesternmost of the Cape
Verdes. The landfall was wonderfully true,
considering that no observations for longitude had
been made.” The longitude was obtained by noting
the time of the sun’s meridian transit: “. . . the
steamship South Wales spoke to the Spray and
unsolicited gave her the longitude by chronometer
as 48° W, ‘as nearly as I can make it,’ the captain
said. The Spray, with her tin clock, had exactly
the same reckoning.” Evidently, his clock worked
well at that time. However, it is elear that it
gradually lost its reliability, although Slocum does
not mention this explicitly.

Then, in the Pacific—it is 1896 now-—Slocum
describes in some detail how he regained the time
by making a lunar distance observation. This
observation can be dated accurately: he left the
island Juan Ferndndez on May 5 and “on the
forty-third day from land—a long time to be
alone,—the sky being beautifully clear and the
moon being ‘in distance’ with the sun, I threw up
my sextant for sights. I found from the result of
three observations, after long wrestling with lunar
tables, that her longitude agreed within five miles
of that by dead-reckoning.” The day was June 16.
The moon was close to first quarter, and the
observation must have been made in the (local)
afternoon. We know his position as well because
he sighted the southernmost island of the
Marquesas on the same day.

It is interesting to construct a simulation of his
observations and work them out by using the
Nautical Almanac tables and the reduction
metheds that were available to him. In this way
we can see what is involved and get an impression
of his “wrestling.” We can also get an idea of the
accuracy that can be achieved. This simulation is
given in the last section, together with a survey of
some mathematical methods.

We assume that Slocum used the Nautical
Almanac. In Montevideo or in Buenos Aires and
maybe already in Gibraltar, he had had the
opportunity to purchase the volume for 1896 (price:
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2 shillings and sixpence). The distances from the
moon to the sun and to a number of prominent
planets and stars that are close to the ecliptic (the
path of the sun) are tabulated in the Nautical
Almanac for every third hour. About these, the
Almanac says in its Explanations:

Lunar Distances.—These pages contain, for every
third hour of Greenwich mean time, the angular
distances, available for the determination of the
longitude, of the apparent center of the moon from
the sun, the larger planets and certain stars as
they would appear from the center of the Earth.
When a Lunar Distance has been observed, and
reduced to the center of the Earth, by clearing it
from the effects of Parallax and refraction, the
numbers in these pages enable us to ascertain the
exact Greenwich mean time at which the objects
would have the same distance.

Since 1907, lunar distances have no longer been
tabulated. One can, however, always construct
them from the declination- and hour-angle tables
via the spherical triangle PSM in Figure 1:

cos(d) = sin(DEC;)sin{DEC,,)
+ cos(DEC;)cos(DECy)cos(GHA; — GHAy)
1)

Modern computer programs on celestial
mechanics exist nowadays in PC versions [12], and
they allow one to look back in time and verify the
tables of the Almanac. That is necessary, because
Slocum writes that he has discovered an error in
them: “The first set of sights . . . put her many
hundred miles west of my reckoning by
account. . . . Then I went in search of a
discrepancy in the tables, and I found it.” Tables
from the Nautical Almanac for June 1896 are
shown in Figure 3. When checking these tables
against the computer, all values reproduce very
accurately, except for the times for the moon’s
right ascension and declination, which appear to
be shifted by 12 h. Only this can be the “error”
that Slocum mentions. However, the tables of the
lunar distances count the hours starting at noon,
rather than at midnight. The discrepancy in the
moon’s tables disappears when the times are
understood as hours after noon. In the Almanac’s
chapter Explanations, it is found that this is -
indeed the way in which the tables are organized:
“Thus, suppose the Right Ascension of the Moon
were required at 9" 40° A.M. mean civil time on
April 22, 1896, or April 21, 21" 40° mean
astronomical time. . . .” All times are thus
astronomical times, and Mean Noon is counted as
0 h, whereas it is 12 h in civil time. In the lunar
distance tables, Noon and Midnight are indicated
explicitly, and no confusion is possible. But for the
tables of the moon’s right ascension and
declination, the place where the change of the date
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is indicated misleadingly suggests the use of civil
time. Slocum “corrected” this 12 h shift and sailed
on “with his tin clock fast asleep.”

In the Indian Ocean, the tin clock lost its
minute-hand and even had to be boiled to make it
run again. On this long passage, Slocum again
found the longitude from the sun’s meridian
transit. But the lunar distance method must have
served to retrieve the time after the clock had
stopped.

In Cape Town Slocum met an astronomer,

Dr. David Gill, and they discussed the
determination of the standard time at sea by the
lunar distance methed. He even presented a talk
about it at Gill’s Institute. This is an amusing
episode. Gill was a famous man. His elaborate
photographs of the southern skies formed the basis
on which the Dutch astronomer J. C. Kapteyn
could base his model of the Milky Way.
Astronomers in those days knew very well that the
standard time could be obtained from lunar
distances. They practiced these methods
themselves with an accuracy far beyond that of
marine navigators. One can almost picture Gill
and his students being kind to this old sailor, who
rediscovered methods that were introduced more
than a century before his time and that were
already becoming cbsolete.

Rediscovered, indeed. Chronometers had long
been standard equipment aboard ships, and they
were good enough to serve on an ocean crossing
without the need for checking them by a lunar, In
most ports their error could be established by time
signals. By leaving behind his chronometer,
Slocum had put himself back almost one century,
to the time when the lunar observation had to be
worked out to give not only the mean time, but
also the local time.

Slecum must have used the lunar distance
method during his long career as captain on his
own ship. Most probably he used only the first half
of the method to find the GMT, and therewith the
chronometer error. Meridian passages were then
-good enough to him for finding the longitude. How
else could it be that he made mistakes in his first
attempts, which he blamed on the Nautical
Almanac? And why would he mention his
observation at all if it would have been routine to
him?

Yes, Slocum rediscovered how to do the lunar
distance method in its original form, with no other
clock than the moon. It is not without a certain
Don Quixotry that he wrote that he felt his vanity
“tickled” when his observations of June 16, 1396,
came out so nicely. But we should give him the
credit that he deserves: it was a great achievement
to remaster this almost extinct art.

6 Navigation

CONCLUSIONS

Finding the time and the longitude at sea by the
lunar distance method developed over a period
starting in the early sixteenth century to the end
of the eighteenth century. When finally lunar
distances of sufficient accuracy could be calculated
in advance and the Nautical Almanac began its
yearly publication, the chronometer had likewise
advanced to the perfection that was needed for
marine purposes. Thus the lunar distance method
could blossom for no more than half a century. To
this, we have the testimony of Captain Lecky,
author of Wrinkles in Practical Navigation [10],
who states that he met no more than a dozen men
who had ever taken a lunar or seen one taken.
Lecky was born in 1838 and went to sea in the
1850s.

Around the turn of the century there were vivid
discussions as to whether or not it would be wise
to keep up the knowledge of lunars. The
arguments in favor can be found in issues of the
Nautical Magazine of the years 1900-1905. These
arguments were certainlty not free of nostalgia,
but, in the words of Lord Dunraven, cited in
Wrinkles: “You never need work one at sea unless
it amuses you to do so.”

This situation was similar to what we see today.
Should the practice of finding one’s position by use
of a sextant be kept up? Does Dunraven’s remark
fit here just as it did 100 years ago, or is the step
to abandon the sextant more drastic than that of
giving up the lunar distance method? A hundred
years ago, the lunar was a backup for the case
that the chronometer would fail. Especially if a
ship carried more than one chronometer, the
likelihood of losing the time seems less than that
of a failure to receive satellite signals. We shall
not take a position in this discussion, but be
content with the statement that astronavigation
by sextant is indeed amusing.

APPENDIX
MATHEMATICAL BASIS AND PRACTICE OF THE
LUNAR DISTANCE METHOD

INTRODUCTION

This appendix describes in detail the different
steps that are involved in deducing the longitude
from a lunar distance observation. As an
illustration, Table 1 presents a simulated set of
observations, such as Joshua Slocum could have
made on June 16, 1896, just southeast of the
Marquesas Islands, and they are worked cut here
with the methods available to him at that time.

Consider the spherical triangles M'ZS’ and MZS
in Figure 1, where Z is the zenith of the observer.
The arcs ZM' and ZM are the apparent and true
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Tabie 1—Simulation. of Slocum’s Lunar Observation on June 16, 1896

TIME OBSERVATION
T - 6" Hf = 41° 42.4' Sun, Lower Limb
T-3 hi = 48° 7.2' Moon, Lower Limb
T d" = 70° 14.6’ LD, Nearest Limbs
T + 3= hi = 49° 25.4' Moon, Lower Limb
T 4 6 H; = 39° 36.4' Sun, Lower Limb
CORRECTIONS
MOON SUN LUNAR DIST.
h" = %(hi + h}) = 48°463 H" = %M, + H)) = 40° 39.4' d’ = 70° 14.6'
dip = —2.8 dip = —-28 sdg = 15.8°
sdy = 16.1’ sdg = 15.8° sdy = 16.1’
h' = 48° 59.6' H' = 40° 524’ d' = T70° 46.5°
Refr. = -0.8 Refr. = -1.2’
Par. = 38.6' Par. = 0.1
h = 49° 374’ H = 40° 513

zenith distances of the moon, and likewise ZS' and
ZS are those of the sun. We speak here of the sun,
but it is understood that the following holds’
equally if S is to denote a star or planet.

Let the measured altitudes and lunar distance,
after reduction to a common time, be given by:

h’ = 90° — ZM’, the apparent altitude of the

moon’s center, corrected for dip

H' = 90° — ZS’', the apparent altitude of the
sun’s center, corrected for dip
d’ = the apparent distance of the centers

After further correcting the altitudes for refraction
and parallax, we have:

h = 90° — ZM, the moon’s true altitude

H = 90° — ZS, the sun’s true altitude

d = the required true distance of the centers
Let us further denote:

Z = the azimuthal angle MZS, which equals

M'ZS’',

The fact that the azimuthal angle Z is common for
the triangles M'ZS’ and MZS is the key to all
lunar distance-reduction schemes that have been
put into practice.

The relations between Z, d’, h', and H' and
between Z, d, h, and H can be written in different
ways. Today we would choose the cosine formula:

cos(d’) = sinth")sin(H") + cos(h’)cos(H' )cos(Z)
cos{d) = sin(h)sin(H) + cos(h)cos(H)cos(Z)

Vol. 44, No. 1

(2)

using a pocket calculator or a computer to obtain
cos(Z) from the first equation, and inserting it in
the second to obtain cos(d).

However, before the advent of pocket calculators,
which is after all very recent, this scheme was
impractical because it involves not only addition
and subtraction, but also multiplication and
division. Our minds are trained to do the former
operations quickly, but not the latter. Therefore
the relation that expresses the required {rue lunar
distance d in terms of h’, H’, d’, h, and H must be
of product form so that the procedure is reduced to
addition and subtraction by taking the logarithms
of the different factors.

DE BORDA’S RIGOROUS METHOD OF FINDING
THE TRUE LUNAR DISTANCE

An ingenious and rigorous scheme for deducing
the true lunar distance was developed by Jean de
Borda. It was the most widely used method during
the first half of the nineteenth century and has
stayed in use as long as lunar distances were
meazured. It is presented here in the formulation
as given by William Chauvenet [13]. A complete
model for reducing a lunar distance observation
following de Borda’s method can be found in a
handbook on the subject by J. H. van Swinden
[14].

The method uses the fact that the relation
between the angles Z, h', H', and d' may
alternatively be written as:

Van der Werf: Lunar Distance Method 7



cosz(% Z) =

cos[-;— th" + H + d’)] cos{% (h' + H' — d’)]

cos(h’yeos(H') @)

Of course the same relation holds for the unprimed
angles.

Yet another form, valid for the primed and
unprimed angles alike, but used here for the
unprimed ones, is

sinz(% d) - cosz(% h + H])

- cos(h)cos(H)cos”(-;- Z) @

Eliminating the factor cos“’(—;— Z) from the above

equations, and writing for brevity
m=20 +H +d)
yields

sinz(% d) = cosz(% h + H])

__cos(h)cos(H)
cos(h’)ecos(H")

Defining now an auxiliary angle M by
cos(h)cos(H) cos(m)cos(m — d)
cos(h")cos(H") cosz(% [h + Hl)

cos(m)cos(m — d) (5)

" sin!(M) = (6)

leads finally to

sin(% d) _ cos(%[h + H])cos(M) )

Equations (6) and (7) are of the desired product
form. With the help of tables of log cos and log sin,
the angle M is obtained from equation (6); the true
lunar distance d then follows from equation (7).

The derivation of the true lunar distance from
Slocum’s simulated observation of June 16, 1896,
is presented in Table 2.

APPROXIMATIVE METHODS FOR FINDING THE
TRUE LUNAR DISTANCE

Many different ways for clearing the lunar
distance from the effects of refraction and parallax
have been developed. In particular, it was desired
to make the method pedagogically transparent by
making the corrections additive, so that the
procedure would take the form:

d=4d + ath - h) + b(H - H) (8)

This necessarily entails an approximative method,
which, however, can be made sufficiently accurate
for all practical purposes. Bowditch gives four
different approximative schemes for deducing the
true lunar distance in the 1849 edition of his
handbook [6]. The formulas of Bowditch’s fourth
method are given and again applied to the
simulation of Slocum’s observation.

By introducing an auxiliary angle A, defined
through

tan(%[h' + H‘])
; tan(%d') — tand)  (9)
tan(ilh‘ — H’])

the reduction can be cast in the form

Table 2—Finding the True Lunar Distance by de Borda's Method

d'" = T0° 46.5
h' = 48° 59.6' log sec 0.18300
H = 40° 52.4' log sec 0.12139
m = 80°19.25 -log cos 9.22565
m-d = 9° 3275 log cos 9.99394
h = 49° 374 log cos 9.81145
H = 40° 51.3' log cos 9.87873
. add
9.21416
log \/above  9.60708
Yo(h + HY = 45° 14.35' lIog cos 9.84766 ............. 9.84766
sub
log sin M 9.75942 logcos M 9.91296
add
log sin{%d) 9.76062
¥d = 35° 1.3
d = 70° 22.6’
8 Navigation Spring 1997



tanth’)

d=d + —F (b - b)
tan(A + —d')
2
_ —tan®) g _ B+ 3dcorr.  (10)
1
tan(A - Ed')

where the 3™ correction is always very small and
can be looked up in a table.

In working out this method, one needs the so-
called proportional logarithms, a clever method for
making interpolations that is described in the next
subsection.

It will be noted from the example in Table 3
below that Bowditch’s fourth method is by no
means less complicated or time-consuming than
the rigorous method of de Borda, and neither is
any of his other three methods.

FINDING THE TIME BY USE OF PROPORTIONAL
LOGARITHMS

The interpolation in the lunar distance tables is
done with the help of proportional logarithms
(P.L.), which are defined by:

P.L(x) = 1og(§) a1

The proportional logarithms can be found in [6].
The tabulation is made for every second between 0
and 3 h. Since the subdivision of hours in 60 min
and of minutes again in 60 s is identical to the
subdivision of a degree, the tabulation applies
equally to time and angles.

Let d be the deduced true lunar distance, which
is found to be in between the tabulated values d,
and d,, given in the Nautical Almanac at times T,
and T,, respectively. The tabulation is given for
every third hour; hence (Ty — T,) = 3 h. Assuming
the rate of change of d constant over this time
interval, one has

T, — Tl) a (dz - dl)
log(——-—T —,) = log d-4d, (12)
or, putting explicitly T — T, = 3 h

(-2 ;) = os(g )
BA\T—T,)] ~ B\a — 4,

30
- log(d2 — dl) (13)

which, by the definition of the 'proportional
logarithm (11) becomes

PL(T - T) = PL(d - d) - PLd;, — d) (14)

Table 4 provides an illustration of this method.

Table 3—Finding the True Lunar Distance by Bowditch's 4th Method

h' = 48°59.6' h =

H' = 40° 524" H =
—_— %

Sum = 89° 52.0’ ¥%Sum =

Diff = 8° 7.2 VLDIiff =

d’ = T0° 46.5' wd' =

Angle A = 84° 16.8’ <=

A - wd =

H =

—corr H =

1% corr = 0.8’ <=

A+ d =

h' =

—corrh =

2" corr = 24.8' <=

d =

1t corr =

2 corr =

39 corr =

d =

49° 37.4' corrth = 37.8
40° 51.3' comrH = -1.1
44° 56.0 log tan 9.99899
4° 3.6’ log cot 11.14887
35° 23.25' log tan 985146
— +
log tan 0.99932
48° 53.55’ log tan 10.05919
40° 52.4' log cot 10.06278
1.1’ P.L. 2.21388
———— . +
P.L. 2.33585
119° 40.05’ log tan 10.24440
48° 59.6’ log cot 9.93927
37.8' P.L. 0.67778
_—
P.L. 0.86145
70° 46.5°
0.8’
a— +
70° 47.3'
24.8
70° 22.5'
0.1 from table XX
— +
70° 22.6'

Vol. 44, No. 1 Van der Werf: Lunar Distance Method g



Table 4—Finding the Time by Use of Proportional Logarithms

T = to be found d = 70°22 36"
T, = 9 00" OOr d, = 86856 23"
d-d = 1°26'13" PL = 0.3197
T, = 12" 00= 00° d, = 70°33 40"
T, = 9 00m 00 d, = 68°56 23
d-d = 1°37 17 PlL. = 0.2672
PL. = 0.0525
approx. T — T, = 2h3gm 30
tabular corr. = 2=

T = 1139~ 39

Note: Times are in mean astronomical time, which is 12 h earlier than mean civil time.

Usually this was accurate enough. But for small
lunar distances such as could occur when
measuring the distance between the moon and a
star or a planet, the rate of change can vary
sufficiently rapidly to cause errors as large as
1 min. A parabolic interpolation also using the
lunar distance differences over the preceding and
the following 3 h time intervals is then required.
The Nautical Almanac provides a table with this
additional time correction.

FINDING THE LOCAL HOUR ANGLE AND THE
LONGITUDE

With the correct mean time established as above
from the true lunar distance, the ship’s
chronometer, and often also its rate, is calibrated.
An observation from which some local hour angle
15 to be determined can then be made at any later
instant. However, the altitudes of the moon and
the sun have been taken simultaneously with the
lunar distance. If the measurements were made
one after the other, as was the practice in the case
of only one observer, these altitude measurements
would have been reduced to the same time as the
observation of the lunar distance. They are
therefore suitable for providing the desired hour
angles.

As a preparation for the calculation, one had to
find the declinations DECy and DECq of the moon
and the sun at the established mean time by
interpolation in the Nautical Almanac tables. The
declination of the moon was tabulated for every
hour, along with its variation over every 10 min
period. The interpolation within the last 10 min
interval was left to the practitioner. The sun’s
declination was given only at mean noon. Its daily
variation being small, the interpolation was also
left to do by heart.

As an aside, it is remarkable that a faster
interpolation, with the help of proportional
logarithms, suited to find the moon’s declination
and right ascension, seems never to have been

10 Navigation

used. For angular values ¢ that are tabulated for
every hour (T, — T, = 1%, the formula would be

PL(T - T)) — P.L(1) = PL(¢ — ¢1)
— PL{b; — ¢ (15)

where P.L.(1) = log(%) = 0.4771 is just a
constant.

With a slight modification, the method can even
be used for slowly varying angular values that are
tabulated in 24 h intervals, such as the sun’s
declination and right ascension. Omitting in the
time differences the seconds, and reading seconds
for the minutes and minutes for the hours, all
values are brought within the range of the
tabulation range of the proportional logarithm.
One then has

PL(T — T)) - P.L(24") = P.L(¢ — &)
— PL($: — dp)  (16)

where again P.L.(24™) = 0.8751 is a constant, The
accuracy in time up to 1 min would be acceptable
for nautical, but not for astronomical purposes.

Besides the two declinations, one needs a good
guess for the latitude by dead reckoning from the
last meridian passage observation. The local hour
angles LHAy and LHA; are then found from the
spherical triangles PZM and PZS, respectively,
where P is the North Pole. Again the relevant
formula must have a product form, to make the
procedure additive in terms of logarithms. With
Z=90°—-horZ =90° — H, denoting the zenith
distance, the most convenient form is

cosﬂ(%LHA) =

cos%(DEC + LAT + Z)cos% (DEC + LAT ~ 2)
cos{DEC)cos(LAT)

(a7

Table 5 shows the determination of the local hour
angle both for the moon and the sun from Slocum’s

Spring 1997




Table 5—Finding the Moon’s and the Sun’s Local Hour Angles

MOON

DEC® = 8° 14’ 39" log sec  0.00451
LAT? = —10° 38’ 00" log sec  0.00752

Z = _ 407 22 36"

Sum = 37° 59 15"
¥%Sum = 18° 59' 38" log cos 9.87571
%Sum — 7 = --21° 22’ 58" log cos  9.96803

add
log cos?  9.95677
BLHA = 17° 55’ 38" <= log cos 9.9783%
LHA = 35° 51" 16" East of Meridian
SUN

DECY = 23° 24' 00" log sec  0.03727
LATY = —10° 38" 00 log sec  0.00752

Z = _49° 8 42"

Sum = 61° 54’ 42"
¥%Sum = 30° 57 21 log cos 9.93327
%BSum — Z = 18° 11" 21" log cos 9.97776

add
log cos® 9.95581
wLHA = 18° 7' 18" <= log cos 9.97791
LHA = 36° 14’ 36" West of Meridian

*Found by interpolation from the Nautical Almanac at the established mean time.
bThe latitude must be guessed on the basis of the last meridian altitude.

observations, and finally in Table 6 the steps are
given that lead from the local hour angle to the
longitude.

ACCURACY AND SOURCES OF ERROR

It is inieresting to investigate how the
accuracies in the observations of the lunar
distance and the two altitudes affect the final
results. This is accomplished by evaluating in the
example the change in the established mean time
and in the longitudes, both deduced via the local
hour angles of the sun and of the moon, upon a
1’ error in each of the observed quantities and in
the adopted latitude.

A misreading of =1’ in the lunar distance, d”,
gives a change of = 1™ 50" in the mean time and a
change of £28' in the longitude, calculated via
either the moon or the sun.

The effect of an error in the adopted latitude is
small in the present example, and the change in
the deduced longitudes is on the order of 1’

A 1’ error in either the altitude of the sun, H",
or that of the moon, h”", causes an error of only 1 s
in the time and errors no larger than 1' in the
longitude. This result was to be expected. Clearing
the lunar distance of the effects of parallax and
refraction gives a correction to the lunar distance
which is on the order of 1 deg or less, d’ — d
= 23.9' in the example. Errors in the altitudes
which are on the 1:1000 level of the altitudes
themselves affect (d’ — d) also on the 1:1000 level

Vol. 44, No. 1

and thus cause changes on the order of 1 arcsec or
less.

It follows that the necessity of synchronizing the
altitude observations with that of the lunar
distance, on which handbooks such Bowditch and
Raper lay strong emphasis, is much less if the only
interest is in finding the time. To solidify this
statement, a sequence of observations H’, d’, h" is
analyzed, with d” taken at the sought-for mean
time, H” taken 3 min earlier, and h* 3 min later.
It is then found that the time comes out only 32 s
early. Inverting the order of the observations and
taking h” first and H” last gives a time that is 30 s
late. .

Of course the effect on the longitude is more
severe if one continues the calculation of the local
hour angles from the measured altitudes as if they
were synchronous with the lunar distance. In the
example, the resulting errors are then 35’ for ZPS
and 52’ for ZPM, but other examples can easily be
constructed where the error will be much larger.

Yet such a sequence of only three observations
can still give satisfactory results if, as above, the
time differences are ignored only in deducing the
mean time, but not in evaluating the local hour
angles. In the example, the sun’s and the moon’s
heights were taken 3 min before or after the lunar
distance observation. Since the time deduced for
the lunar distance observation might have an
uncertainty of 0.5 min, the proper times to be used
for the height observations will likewise have this
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Table 6—Finding the Longtitude

SIDERIAL TIME

Time of obs. June 16 AT = 11" 39~ 32*
Last transit Ariés June 15 AT = 18" 19~ 56¢

time diff = 17" 19 36°

From table corr. to ST = 00 02m 51°

add
ST = 17 22~ 27¢
MOON (via Sid. Time)
ST = 17h 22m 27+
moon’s r.a.2 = 10" 327 02
———— sub
Hour Angle = 6"50™02¢ => GHA = 102° 36’ 15"
LHA (East) = 35° 51’ 16"
——— add
Longitude = 138° 27' 31"
SUN (via Sid. Time)
ST = 17k 22~ 275
sun’s r.a.® = 5h43™ 34°
—— sub
Hour Angle = 11" 38" 53° => GHA = 174° 43" 15"
LHA (West) = 36° 14’ 36"
——— sub
Longitude = 138° 28' 39"
or equivalently
SUN (via App. Time)
Mean AT = 11® 39~ 32¢
Eq. of Time* = (" 00™ 39°
— sub
App. AT = 11" 38" 53 => GHA = 174° 43’ 15"
LHA (West) = 36° 14’ 36"
—— sub
Longitude = 138° 28' 39"

*Found by interpolation from the Nautical Almanac.

uncertainty. The corresponding error in the
longitude then stays within 10'.

Slocum took such a sequence of three
observations, and from his statement that he left
his tin clock “asleep,” it may be guessed that he
estimated the time intervals between them by
counting aloud.

In conclusion, it is found that when the different
observations are properly synchronized, or the
times elapsed between them are duly taken into
account, it is the accuracy of the observed lunar
distance, d", which 15 by far the most crucial
element in finding the time and the longitude.

The assumed uncertainty of 1’ in the reading of
d” is a typical value to be expected for an
experieniced observer equipped with a perfect
sextant, and can be worse in high seas and better
in fair conditions. The uncertainty in d” entails an
uncertainty of about 2 min in the mean time or 30’
in the longitude.
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