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Abstract 
The history and practice of the lunar distance method are described, with special emphasis on its use in the nineteenth 
century. It is only in the first half of the last century that lunars were widely practised. We describe in some detail the 
story of Captain Joshua Slocum, the first solitary circumnavigator, whose lunar observation in 1896 was made in its 
original form, with nothing but the moon as a clock. A simulation of his observations and their reduction by the means 
available to the nineteenth century navigator is described, and a short review of these methods is presented. 
 
History and prehistory of the lunar 
distance method. 
 
From the early beginning of voyages across the oceans 
the determination of latitude has not been a problem: 
the Portuguese had introduced the marine astrolabe, 
which permitted altitudes to be taken at meridian 
passage with an accuracy of half a degree and the sun’s 
declination tables [1] were accurate within a few 
minutes. 
The situation for longitude was different. Ships often 
found themselves more than ten degrees off from their 
dead-reckoned positions and sometimes much more. 
The only time they knew was the local time, which 
they could tell from the sun. But in addition the time at 
some standard meridian was needed as a reference to 
find the longitude. This problem would be solved if 
only one had a clock that could be regulated to keep 
the time at some standard meridian. The time of the 
sun’s meridian passage, local noon, read off on such a 
clock would then tell the longitude.  
The notion that the moon could be used as a clock 
must have already existed among sailors at that time: 
the first attempt to find the longitude by the lunar 
distance is said to have been made by Amerigo 
Vespucci in 1499. He was aboard with Columbus on 
his third voyage to America as cartographer. Possibly 
also Magelhães tried it, during his voyage around the 
world (1519-1521). 
Whether this is truth or merely saga, we do not know: 
there are no records kept. But even if such observations 
would have been made the mariners of around 1500 
could not have deduced their longitude because of a 
lack of the required mathematical background. 
In the beginning of the sixteenth century, 
mathematicians, astronomers and cartographers, 
notably Gemma Frisius (1508-1555) [2], had advanced 
the mathematics of spherical triangulation to the point 
that they could realistically suggest obtaining the time 
and thus the longitude at sea from a measurement of 
the distance between the moon and the sun or a planet 
or a fixed star.  
The moon loses a full circle to the sun in 29.5 days. In 
the navigator's geocentric world their directions are  

like the hands of a giant clock, the angle between them 
changing by 30.5''/min. If the positions of the moon 
could be predicted well enough and sufficiently in 
advance, the angle between it and the sun, the lunar 
distance, might be tabulated in the time of some 
standard meridian. The moon would then be a perfect, 
never failing clock. In those days the motion of the 
moon was not well enough understood and neither did 
the navigational instruments have sufficient accuracy. 
Yet considerable effort was put in establishing lunar 
tables for nautical use. A decisive step was made when 
Isaac Newton established the law of gravitation [3]. It 
gave the necessary scientific background to the 
calculation of the motion of celestial bodies, which 
before had been merely phenomenology. Still it was 
only in the second half of the eighteenth century, 
mostly through the work of German astronomers like 
Johann Tobias Mayer of Göttingen (1723-1762), that 
lunar distances could be predicted with errors no larger 
than 1 arcmin. By that time the sextant was already in 
use. It was Nevil Maskelyne who published the first 
systematic tabulation of lunar distances, which was 
based on Mayers tables [4]. 
Eight years earlier, in 1759, John Harrison had 
succeeded in making the first useful marine 
chronometer, for which he was rewarded with £20,000 
by theBritish Government. Not long after him, the 
French clockmaker Berthoud was also able to produce 
a reliable timekeeper. 
And so, within a few years, two methods had become 
available by which longitude at sea could be obtained. 
The problem of longitude had finally been solved. A 
good survey of the history of time measurement is 
given by Derek Howse [5]. 
In the beginning chronometers could not be produced 
in large quantities and in the following years the lunar 
distance was the more widely used method. James 
Cook, on his voyage with the Endeavour, was one of 
the first users. For doing the elaborate calculations 
necessary to deduce the time from the observed lunar 
distance, he had the help of an astronomer, appointed 
to this task by the Government. 
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Principal and practice of the lunar distance 
method. 
 
Deducing from a lunar observation, or lunar for short, 
the time and the longitude is a complicated procedure. 
The scheme of the solution is, however, simple and is 
illustrated in Figure 1: 
 
 

 
Fig. 1: The situation at the time of the Slocum's lunar 
distance observation near the Marquesas on June 16, 
1896. Positions are shown, projected onto the surface 
of the earth, in an outward-in view. P = (North) pole, 
S' = apparent sun, M' = apparent moon, S = true sun, 
M = true moon, Z = the observer’s zenith.  
 
1) From his position (Z) the observer measures the 
apparent lunar distance between the bright limbs (d''), 
the lower-limb altitude (H'') of the sun and the lower-
limb altitude (h'') of the moon. The altitudes must be 
reduced to their values at the observation time of the 
lunar distance, either by calculation or by interpolation 
of several observations. Ideally the three measurements 
should be taken simultaneously by three different 
observers, at the moment indicated by the person who 
takes the lunar distance, while a fourth person reads the 
chronometer. For one single observer Bowditch [6] 
recommends taking both altitudes twice, first 
preceding the observation of the lunar distance and 
thereafter once more and in reverse order, noting the 
chronometer time of each observation. Raper [7] 
makes a further recommendation that the altitudes of 
the object farthest from the meridian should be taken 
as the first and the last. 
The measured quantities are first corrected for 
semidiameters. The altitudes are also corrected for dip 
to give the apparent altitudes H' and h'. The apparent 
zenith distances ZS' = 90º- H' and ZM' = 90º - h', 
together with the apparent lunar distance d' = S'M' fix 
the triangle ZS'M'. 
 

 2) The apparent altitudes must be further corrected for 
refraction and for to give the true altitudes H and h. 
These are both “vertical” corrections, which do not 
influence the enclosed azimuthal angle, so that ZSM = 
ZS'M'. This is the crux that makes the lunar distance 
method work: the spherical triangle ZSM is fixed and 
the true lunar distance, d = SM follows. 
 3) With d known, the Greenwich mean time (GMT) is 
found by interpolation in the lunar distance tables.  
 4) GMT being known, the declinations of the sun and 
the moon can be looked up from the Almanac. With 
the latitude adopted from the last meridian passage and 
dead-reckoning , their local hour angles are found from 
the triangles PSZ and PMZ, respectively, whereafter 
the longitude follows as LONG = GHA-LHA. 
 
Until the year 1834 the Almanac gave all quantities in 
apparent time, which is immediately obtained from the 
sun’s position. In order to make the Almanac also 
suitable for astronomical use, the ephemerides were 
given in astronomical mean time from 1834 on. The 
beginning of the astronomical day was taken to be the 
Greenwich meridian passage of the mean sun, while 
the civil day started twelve hours earlier, at midnight. 
In 1925 the astronomical day was redefined to coincide 
with the civil day. 
In the appendix, the interested reader will find a 
simulation of Joshua Slocum’s [8] observation on June 
16, 1896, using the methods that were available to the 
late-eighteenth and nineteenth century navigator. Part 
of this simulation has appeared in an earlier article [9]. 
Before the end of the eighteenth century different 
mathematical reduction procedures were introduced by 
Lyons, Dunthorne, Maskelyne, Krafft and De Borda. 
De Borda’s method has long been considered as the 
best. During the first half of the nineteenth century 
many more methods were introduced which aimed at 
reducing the calculational burden by the use of tables. 
For example, one finds four different procedures in the 
1849 edition of Nathaniël Bowditch’s famous 
handbook [6]. 
During the nineteenth century, chronometers became 
generally available. It became common practice to use 
the lunar distance method to find the chronometer's 
correction and rate, thus keeping it regulated at the 
standard time. The obvious advantage was that the 
fourth step, the determination of the local time, might 
then be done at any other instant. 
Already by the middle of the century ships would 
generally have been equipped with several 
chronometers. Because the time at sea between ports 
also became shorter, the chronometer time became 
more reliable than what could be achieved from a lunar 
distance observation.This meant that lunars were only 
seldom used in the second half of the nineteenth 
century. In his handbook [10], published for the first 
time in 1881 and reprinted almost yearly, Captain 
Lecky (1838-1902) stated: “The writer of these pages, 
during a long experience at sea in all manner of 
vessels...., has not fallen in with a dozen men who had 
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themselves taken Lunars, or even had seen them 
taken.” 
In 1902 a review of the history of lunar observation by 
E. Guyou, member of the French Bureau de Longitude, 
appeared in La Revue Maritime [11]. In this article it 
was announced that the publication of lunar distance 
tables in the Connaissance du Temps would be stopped 
from 1905. The Nautical Almanac continued to publish 
lunar distances until 1907. It is, therefore, all the more 
interesting that maybe the best known lunar 
observation, if not in history then in literature, was 
made as late as 1896.  
 
Joshua Slocum's observation on June 16, 
1896. 
 
On April 24, 1895, Captain Joshua Slocum set out on 
his voyage that was to become the first solitary 
circumnavigation of the globe. His account of this 
enterprise [8], has become a classic. Figure 2 shows a 
portrait of Slocum from the 1949 edition. 

 
Fig. 2: Captain Joshua Slocum. Pen drawing by A.E. 
Berbank from Sailing alone around the world, The 
Reprint Society, London (1949). 
 
His book is also interesting because it tells the story of 
a very keen self-made navigator and literate man, but 
with no formal education in navigation. There were 
many like him in the second half of the nineteenth 
century, captain-owners of sailing ships. Crews were 
small in those times, especially because of the 
increasing competition of engine-driven vessels, and 
often these captains would be the only ones aboard 
with navigational knowledge. This forms a contrast 
with earlier times when trade across the oceans was the 
exclusive domain of larger companies, like for instance 
the Dutch East- and West Indian Companies, which 
saw to it that crews should count among them a 
sufficient number of men with a proper education. 

Slocum has become the Adam figure for yachtsmen 
and even today we are still fascinated by the question 
of how he navigated. From his time as captain-owner 
of a moderately large sailing ship he had kept a 
chronometer. However, it needed repairing which 
would have cost $15 an amount Slocum was reluctant 
to spend. Nevertheless: “In our newfangled notions of 
navigation it is supposed that a mariner cannot find his 
way without one; and I had myself drifted into this way 
of thinking.” He finds a compromise and buys an old 
tin clock, discounted from $1,50 to $1,00. 
About his navigation on the Atlantic crossings, Slocum 
gives little detail. It appears that he has limited himself 
to meridian altitudes: “On September 10 the Spray 
passed the island of St. Antonio, the northwesternmost 
of the Cape Verdes. The landfall was wonderfully true, 
considering that no observations for longitude had 
been made.” However, “...the steamship South Wales 
spoke to the Spray and unsolicited gave her the 
longitude by chronometer1 as 48º W, ‘as nearly as I can 
make it,’ the captain said. The Spray, with her tin 
clock, had exactly the same reckoning.” Evidently, his 
clock worked well at that time. However, it is clear that 
it gradually loses its reliability, although Slocum does 
not mention this explicitly. 
Then, in the Pacific- it is 1896 now - Slocum describes 
in some detail how he regained the time by making a 
lunar distance observation. This observation can be 
dated accurately: he leaves the island Juan Fernández 
on May 5 and “on the forty-third day from land-a long 
time to be alone,- the sky being beautifully clear and 
the moon being ‘in distance’ with the sun, I threw up 
my sextant for sights. I found from the result of three 
observations, after long wrestling with lunar tables, 
that her longitude agreed within five miles of that by 
dead-reckoning.” 
The day is June 16. The moon is close to first quarter 
and the observation must have been made in the (local) 
afternoon. We know his position as well because he 
sights the southernmost island of the Marquesas on the 
same day.  
 It is interesting to construct a simulation of his 
observations and work them out by using the Nautical 
Almanac tables and the reduction methods that were 
available to him. In this way we can see what is 
involved and get an impression of his “wrestling”. We 
can also get an idea of the accuracy that can be 
achieved. This simulation is given in the last section, 
together with a survey of some mathematical methods. 
We assume that Slocum used the Nautical Almanac. In 
Montevideo or in Buenos Aires and maybe already in 
Gibraltar he had had the opportunity to purchase the 
volume for 1896 (price: 2 shilling and sixpence). 
 
                                                
1 Addendum to the original article: Slocum seems to have done some 
observations for longitude after all. “Longitude by chronometer” 
means that  the local hour angle is found from an observed solar 
height and a guessed latitude. With the sun’s GHA at the time of the 
observation, taken from the Almanac, the longitude follows as GHA-
LHA. 
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The distances from the moon to the sun and to a 
number of prominent planets and stars that are close to 
the ecliptic (the path of the sun) were tabulated in the 
Nautical Almanac for every third hour. About these, 
the Almanac says in its Explanations:  
 
Lunar Distances.-These pages contain, for every third 
hour of Greenwich mean time, the angular distances, 
available for the determination of the longitude, of the 
apparent center of the moon from the sun, the larger 
planets and certain stars as they would appear from 
the center of the Earth. When a Lunar Distance has 
been observed, and reduced to the center of the Earth, 
by clearing it from the effects of Parallax and 
refraction, the numbers in these pages enable us to 
ascertain the exact Greenwich mean time at which the 
objects would have the same distance.  
 
Since 1907 lunar distances have no longer been 
tabulated. One can, however, always construct them 
from the declination- and hour-angle tables via the 
spherical triangle PSM in Figure 1: 
 
cos(d) = sin(DECS)sin(DECM) + 
cos(DECS)cos(DECM)cos(GHAS-GHAM)                  (1) 
 
Modern computer programs on celestial mechanics 
exist nowadays in PC versions [12] and they allow one 
to look back in time and verify the tables of the 
Almanac. That is necessary, because Slocum writes 
that he has discovered an error in them: “The first set 
of sights... put her many hundred miles west of my 
reckoning by account...Then I went in search of a 
discrepancy in the tables, and I found it.” 
Tables from the Nautical Almanac for June 1896 are 
shown in Figure 3. When checking these tables against 
the computer, all values reproduce very accurately, 
except for the times for the moon’s right ascension and 
declination, which appear to be shifted by 12 hours. 
Only this can be the “error” that Slocum mentions. 
However, the tables of the lunar distances count the 
hours starting at noon, rather then at midnight. The 
discrepancy in the moon’s tables disappears when also  
here the times are understood as hours after noon. In 
the Almanac’s chapter Explanations, it is found that 
this is indeed the way in which the tables are 
organized: “Thus, suppose the Right Ascension of the 
Moon were required at 9h 40m A.M. mean civil time on 
April 22, 1896, or April 21, 21h 40m mean astronomical 
time....” All times are thus astronomical times and 
Mean Noon is counted as 0 hours, whereas it is 12 
hours in civil time. In the lunar distance tables Noon 
and Midnight are indicated explicitly and no confusion 
is possible. But for the tables of the moon's right 
ascension and declination, the place where the change 
of the date is indicated, misleadingly suggests the use 
of civil time. Slocum “corrected” this 12 hour shift and 
sailed on “with his tin clock fast asleep.” 
In the Indian Ocean, the tin clock loses its minute-hand 
and even has to be boiled to make it run again. On this 

long passage, Slocum again finds the longitude from 
the sun's meridian transit. But the lunar distance 
method must have served to retrieve the time after the 
clock had stopped. 
In Cape Town he meets an astronomer, Dr. David Gill, 
and they discuss the determination of the standard time 
at sea by the lunar distance method. He even presents a 
talk about it at Gill’s Institute. This is an amusing 
episode: Gill was a famous man. His elaborate 
photographs of the southern skies formed the basis on 
which the Dutch astronomer J.C. Kapteyn could base 
his model of the Milky Way.  
Astronomers in those days knew very well that the 
standard time could be obtained from lunar distances. 
They practised these methods themselves with an 
accuracy far beyond that of marine navigators. One can 
almost picture Gill and his students, being kind to this 
old sailor, who rediscovers methods that were 
introduced more than a century before his time and that 
were already becoming obsolete. 
Rediscover, indeed: chronometers had long been 
standard equipment aboard ships and they were good 
enough to serve on an ocean crossing without the need 
of checking them by a lunar. In most ports their error 
could be established by time signals. By leaving 
behind his chronometer, Slocum had put himself back 
almost one century, to the time that the lunar 
observation had to be worked out to give not only the 
mean time but also the local time. 
Slocum must have used the lunar distance method 
during his long career as captain on his own ship. Most 
probably he used only the first half of the method to 
find the Greenwich mean time, and therewith the 
chronometer error. Meridian passages were then good 
enough to him for finding the longitude. How else 
could it be that he makes mistakes in his first attempts, 
which he blames on the Nautical Almanac? And why 
would he mention his observation at all if it would 
have been routine to him? 
Yes, Slocum rediscovered how to do the lunar distance 
method in its original form, with no other clock than 
the moon. It is not without a certain Don Quixotry 
when he writes that he feels his vanity "tickled" when 
his observations of June 16, 1896, come out so nicely. 
But we should give him the credit that he deserves: it 
was a great achievement to re-master this almost 
extinct art.  
 
Conclusions 
 
Finding the time and the longitude at sea by the lunar 
distance method developed over a period starting in the 
early sixteenth century to the end of the eighteenth 
century. When finally lunar distances of sufficient 
accuracy could be calculated in advance and the 
Nautical Almanac began their yearly publication, the 
chronometer had likewise advanced to the perfection 
that was needed for marine purposes. Thus the lunar 
distance method could blossom for no more than half a 
century. To this, we have the testimony of Captain 
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Lecky, author of Wrinkles in Practical Navigation, 
who states that he met no more than a dozen men who 
had ever taken a lunar or seen one taken. Lecky was 
born in 1838 and went to sea in the 1850s. 
Around the turn of the century there were vivid 
discussions as to whether or not it would be wise to 
keep up the knowledge of lunars. The arguments in 
favor can be found in issues of the Nautical Magazine 
of the years 1900-1905. These arguments were 
certainly not free of nostalgia, but, in the words of 
Lord Dunraven, cited in Wrinkles: “You never need 
work one at sea unless it amuses you to do so.” 
This situation was similar to what we see today: should 
the practice of finding ones position by use of a sextant 

be kept up? Does Dunraven's remark fit here just like it 
did one hundred years ago, or is the step to abandon 
the sextant more drastic than that of giving up the lunar 
distance method? A hundred years ago, the lunar was a 
backup for the case that the chronometer would fail. 
Especially if a ship carried more than one chronometer 
the likelihood of losing the time seems less than that of 
a failure to receive satellite signals. We shall not take a 
position in this discussion, but be content with the 
statement that astronavigation by sextant is indeed 
amusing. 
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APPENDIX: Mathematical basis and practice of the Lunar Distance Method. 

 
Introduction 
 
This appendix describes in detail the different steps 
that are involved in deducing the longitude from a 
lunar distance observation. As an illustration, Table 1 
presents a simulated set of observations, such as 
Joshua Slocum could have made on June 16, 1896, just 
South-East of the Marquesas Islands and we shall work 
them out with the methods available to him at that 
time.  
Consider the spherical triangles M'ZS' and in Figure 1, 
where Z is the zenith of the observer. The arcs ZM' and 
ZM are the apparent and true zenith distances of the 
moon and likewise ZS' and ZS are those of the sun.We 
shall speak here of the sun, but it is understood that the 
following holds equally if S is to denote a star or 
planet. 
Let the measured lunar distance and the altitudes, after 
reduction to a common time, be given by: 
 

 
 h' = 90º - ZM', the apparent altitude of the moon’s 
center, corrected for dip. 
 H' = 90º - ZS', the apparent altitude of the sun’s center, 
corrected for dip. 
 d' = the apparent distance of the centers. 
 
After further correcting the altitudes for refraction and 
parallax, we have: 
 
 h = 90º - ZM, the moon’s true altitude. 
 H = 90º - ZS, the sun’s true altitude. 
 d = the required true distance of the centers. 
 
We further denote: 
 
Z = the azimuthal angle MZS, which equals M'ZS'. 
 
 

 
 
The fact that the azimuthal angle Z is common for the 
triangles M'ZS' and and MZS is the key to all lunar 
distance reduction-schemes that have been put into 
practice. The relations between Z, d', h' and H' and 
between Z, d, h and H can be written in different ways. 
Today we would choose the cosine formula: 
 
cos(d') = sin(h')sin(H') + cos(h')cos(H')cos(Z)         (2a) 
cos(d) = sin(h)sin(H) + cos(h)cos(H)cos(Z)             (2b) 
 
and use a pocket calculator or a computer to obtain 
cos(Z) from the first equation, and insert it in the 
second to obtain cos(d).  

However, before the advent of pocket calculators 
which is after all very recent, this scheme was 
unpractical because it involves not only addition and 
subtraction but also multiplication and division. Our 
minds are trained to do the former operations quickly, 
but not the latter. Therefore the relation that expresses 
the required true lunar distance d in terms of h', H', d', 
h and H must be of product form so that the procedure 
is reduced to addition and subtraction by taking the 
logarithms of the different factors. 
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De Borda's rigorous method of finding the 
true lunar distance. 
 
An ingenious and rigorous scheme for deducing the 
true lunar distance was developed by Jean de Borda. It 
was the most widely used method during the first half 
of the nineteenth century and has stayed in use as long 
as lunar distances were measured. We present it here in 
the formulation as given by William Chauvenet [13]. A 
complete model for reducing a lunar distance 
observation following De Borda's method, can be 
found in a handbook on the subject by J.H. van 
Swinden [14]. 
 
The method uses the fact that the relation between the 
angles Z, h', H' and d' may alternatively 
be written as: 
 

))cos(cos(
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2
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                                                                     (3) 
 
Of course the same relation holds for the unprimed 
angles.Yet another form, valid for the primed and 
unprimed angles alike, but used here for the unprimed 
ones, is: 
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equations, and writing for brevity: 
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Defining now an auxiliary angle M by: 
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leads finally to: 
 

)cos(])[cos()sin(
2

1

2
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Equations (6) and (7) are of the desired product form. 
With the help of tables of log cos and log sin, the angle 
M is obtained from eq. (6), whereafter the true lunar 
distance d follows from the eq. (7). 
The derivation of the true lunar distance from Slocum's 
simulated observation of June 16, 1896, is presented in 
Table 2. 
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Approximative methods for finding the 
true lunar distance. 
 
Many different ways for clearing the lunar distance 
from the effects of refraction and parallax have been 
developed. In particular it was desired to make the 
method pedagogically transparent by making the 
corrections additive, so that the procedure would take 
the form: 
 

)(()( HHbhhadd                           (8) 
 
This necessarily entails an approximative method, 
which, however can be made sufficiently accurate for 
all practical purposes. Bowditch gives four different 
approximative schemes for deducing the true lunar 
distance in the 1849 edition of his handbook. The 
formulas of Bowditch’s fourth metod are given and 
again applied to the simulation of Slocum's 
observation. 
By introducing an auxiliary angle A, defined through, 
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)][tan(

2
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the reduction can be cast in the form: 
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where the 3rd correction is always very small and can 
be looked up in a table.  
In working out this method, one needs the socalled 
proportional logarithms, a clever method for making 
interpolations, that is described in the next subsection. 
It will be noted from the example in Table 3 below, 
that Bowditch's fourth method is by no means less 
complicated or time-consuming than the rigorous 
method of de Borda, and neither is any of his other 
three methods.  
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Finding the time by use of proportional 
logarithms. 
 
The interpolation in the lunar distance tables is done 
with the help of proportional logarithms (P.L.), which 
are defined by: 
 

)(3
log)(P.L.

x
x                                             (11) 

The proportional logarithms can be found in [6]. The 
tabulation is made for every second between zero and 
three hours. Since the subdivision of hours in 60 min 
and of minutes again in 60 s is identical to the 
subdivision of a degree, the tabulation applies equally 
to time and angles. 
 
Let d be the deduced true lunar distance, which is 
found to be in between the tabulated values d1 and d2, 
given in the Nautical Almanac at times T1 and T2,  
 

 
respectively. The tabulation is given for every third 
hour; hence (T2-T1) = 3 h. Assuming the rate of change 
of d constant over this time interval, one has 
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or, putting explicitly T2-T1 = 3 h, 
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which, by the definition of the proportional logarithm 
(11) becomes 
 

)(P.L.)(P.L.)(P.L. 1211 ddddTT           (14) 
 
Table 4 provides an illustration of this method. 
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Usually this was accurate enough. But for small lunar 
distances such as could occur when measuring the 
distance between the moon and a star or a planet, the 
rate of change can vary sufficiently rapidly to cause 
errors as large as 1 min. A parabolic interpolation 
using also the lunar distance differences over the 
preceding and the following 3 h time intervals is then 
required. The Nautical Almanac provided a table with 
this additional time correction. 
 
Finding the local hour angle and the 
longitude. 
 
With the correct mean time established as above from 
the true lunar distance, the ship's chronometer, and 
often also its rate, is calibrated. An observation from 
which some local hour angle is to be determined can 
then be made at any later instant. However, the 
altitudes of the moon and the sun have been taken as 
simultaneous with the lunar distance. If the 
measurements were made one after the other, as was 
practice in the case of only one observer, these altitude 
measurements have been reduced to the same time as 
the observation of the lunar distance. They are 
therefore suitable for providing the desired hour 
angles. 
As a preparation for the calculation one had to find the 
declinations DECM and DECS of the moon and the sun 
at the established mean time by interpolation in the 
Nautical Almanac tables. The declination of the moon 
was tabulated for every hour along with its variation 
over every 10 min. period. The interpolation within the 
last 10 min. interval was left to the practitioner. The 
sun's declination was only given at mean noon. It's 
daily variation being small, the interpolation was also 
left to do by heart. 
As an aside, it is remarkable that a faster interpolation, 
with the help of proportional logarithms, suited to find 
the moon's declination and right ascension, seems 
never to have been used. For angular values  , that are 

tabulated for every hour (T2 – T1 = 1 h), the formula 
would be 
 

)(P.L.)(P.L.)1(P.L.)(P.L. 1211  TT      (15) 
 
where P.L.(1) = log(3) = 0.4771 is just a constant. 
With a slight modification, the method can even be 
used for slowly varying angular values that are 
tabulated in 24h intervals, such as the sun’s declination 
and right ascension: omitting in the time differences 
the seconds and reading seconds for the minutes and 
minutes for the hours, all values are brought within the 
range of the tabulation range of the proportional 
logarithm. One then has: 
 

)(P.L.)(P.L.)24(P.L.)(P.L. 121
h

1  TT    (16) 
 
where again P.L.(24h) = 0.8751 is a constant. The 
accuracy in time up to 1 min. would be acceptable for 
nautical, but not for astronomical purposes. 
Besides the two declinations, one needed a good guess 
for the latitude by dead-reckoning from the last 
meridian passage observation. The local hour angles 
LHAM$ and LHAS are then found from the spherical 
triangles PZM and PZS, respectively, where P is the 
North Pole. Again the relevant formula must have a 
product form, to make the procedure additive in terms 
of logarithms. With z = 90º -h or z = 90º - H, denoting 
the zenith distance, the most convenient form is: 

)17(
))cos(cos(

)]()]cos[(cos[

)(cos

2

1

2

1
2

12

LATDEC

zLATDECzLATDEC

LHA





Table 5 shows the determination of the hour angle both 
for the moon and the sun from Slocum's observations, 
and finally in Table 6 the steps are given that lead from 
the local hour angle to the longitude. 
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Accuracy and sources of error. 
 
It is interesting to investigate how the accuracies in the 
observations of the lunar distance and the two altitudes 
affect the final results. This is accomplished by 
evaluating in the example the change in the established 
mean time and in the longitudes, both deduced via the 
local hour angles of the sun and of the moon, upon a 1' 
error in each of the observed quantities and in the 
adopted latitude. 
A misreading of ±1' in the lunar distance, d'', gives a 
change of ± 1m 50s in the mean time, and a change of  
 
 
± 28' in the longitude, calculated either via the moon or 
the sun. 
The effect of an error in the adopted latitude is small in 
the present example and the change in the deduced 
longitudes is in the order of 1'. 
A 1' error in either the altitude of the sun, H'', or that of 
the moon, h'', causes an error of only 1 s in the time 
and errors no larger than 1' in the longitude. This result 
was to be expected. Clearing the lunar distance of the 
effects of parallax and refraction gives a correction on  
 

 
 
the lunar distance which is in the order of 1 deg or less, 
d - d' = 23'.9 in the example.  
Errors in the altitudes which are on the 1:1000 level of 
the altitudes themselves, affect (d - d' ) also on the 
1:1000 level and thus cause changes in the order of 1 
arcsec or less. 
It follows that the necessity of synchronizing the 
altitude observations with that of the lunar distance, on 
which handbooks like Bowditch and Raper lay strong 
emphasis, is much less if the only interest is in finding 
the time. To solidify this statement, a sequence of 
observations H'', d'', h'' is analyzed, with d'' taken at 
the sought-for mean time, H'' taken 3 min earlier and 
h'' 3 min. later. It is then found that the time comes out 
only 32 s early. Inverting the order of the observations 
and taking h'' first and H'' last gives a time that is 30 s 
late. 
Of course the effect on the longitude is more severe if 
one continues the calculation of the local hour angles 
from the measured altitudes as if they were 
synchronous with the lunar distance. In the example 
the resulting errors are then 35' for ZPS and 52' for 
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ZPM, but other examples can easily be constructed 
where the error will be much larger. 
Yet, such a sequence of only three observations can 
still give satisfactory results if, as above, the time 
differences are only ignored in deducing the mean time 
but not in evaluating the local hour angles. In the 
example, the sun's and the moon's heights were taken 3 
min before or after the lunar distance observation. 
Since the time deduced for the lunar distance 
observation might have an uncertainty of 0.5 min., the 
proper times to be used for the height observations will 
likewise have this uncertainty. The corresponding error 
in the longitude stays then within 10'. 
Slocum took such a sequence of three observations and 
from his statement that he left his tin clock “asleep”, it 

may be guessed that he estimated the time intervals 
between them by counting aloud. 
In conclusion, it is found that when the different 
observations are properly synchronized or else the 
times elapsed between them are duly taken into 
account, it is the accuracy of the observed lunar 
distance, d'', which is by far the most crucial element 
in finding the time and the longitude. 
The assumed uncertainty of 1' in the reading of d'' is a 
typical value to be expected for an experienced 
observer, equipped with a perfect sextant, and can be 
worse in high seas and better in fair conditions. The 
uncertainty in d'' entails an uncertainty of about 2 min 
in the mean time or 30' in the longitude.  
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