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A new and flexible ray-tracing procedure for calculating astronomical refraction is outlined and applied
to the US1976 standard atmosphere. This atmosphere is generalized to allow for a free choice of the
temperature and pressure at sea level, and in this form it has been named the modified US1976
�MUSA76� atmosphere. Analytical expressions and numerical procedures are presented for calculating
dry-air refractions and for the water-vapor correction. Results for all apparent altitudes are presented
and compared with The Star Almanac for Land Surveyors �1951�, The Nautical Almanac �1958�, and the
Pulkovo tables �Refraction Tables of the Pulkovo Observatory, 1985�. Dependences on sea-level pressure,
temperature, and temperature gradient and on humidity are discussed. © 2003 Optical Society of
America
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1. Introduction

Refraction has intrigued mankind for the past two
millennia. Computations on the basis of atmo-
spheric models are numerous, both in approximative
closed form and, in this computer era, by ray tracing.
The atmospheric models that underlie some com-
monly used tabulations, such as The Star Almanac
for Land Surveyors1 and The Nautical Almanac,2 are,
however, of relatively old age. The more modern
U.S. standard atmosphere of 1976,3 adopted in the
meteorological world, has not yet found its way into
widely used tables. We discuss in this study an
adapted form of it: the modified US1976 atmo-
sphere or MUSA76. It is generalized in such a way
that sea-level pressure and temperature have been
made adjustable and the effect of humidity may be
incorporated.

In earlier research4 analytical expressions for the
dry-air pressure and the water-vapor correction have
been given, derived under the assumption of a con-
stant acceleration of gravity. In the US1976 atmo-
sphere the acceleration of gravity depends on height,
and we present new analytical expressions for the
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partial dry-air and water-vapor pressures. In addi-
tion, we present methods for numerical evaluation.

We derive a scaling law for dry-air MUSA76 refrac-
tions that relates refractions at different sea-level
temperature and pressure, and this is compared with
direct calculations.

A full ray-tracing procedure, for well-behaved tem-
perature profiles equivalent to the common Auer–
Standish5 refraction integral formulation, but more
flexible for nonstandard atmospheres, is presented in
detail.

Comparisons with the Star Almanac1 and the Nau-
tical Almanac2 are made for the sea-level pressures
and temperatures for which they have been defined,
and an additional comparison is made with the more
modern Pulkovo tables.6

2. Ray Tracing

The curvature of a path is given by the inverse of the
local radius of curvature, r. With reference to Fig. 1,
and introducing polar coordinates as x � R sin���, y �
R cos��� and R � R���, the curvature reads

1
r

�

d2y
dx2

�1 � �dy
dx�

2�3�2 �

�R2 � R
d2R
d� 2 � 2�dR
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Denoting in any point of the path the angle be-
tween the local tangent and the circle around the



origin that passes through the same point, as �, one
has
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The denominator of the above equation can be re-
written as

�R2 � �dR
d��

2�1�2

� R�1 � tan2����1�2 � R�cos���, (4)

and from Eqs. �1�–�3� follows
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. (6)

These are two coupled first-order differential equa-
tions for R and � with � as a common variable. This
scheme can be solved by standard numerical integra-
tion techniques if r � r�R, �, �� can be evaluated in
any point.

When this is specialized to the Earth’s atmosphere,
the curvature of a light path can be related to the
index of refraction. For a spherically symmetric at-

mosphere a well-known law, to be found in many
textbooks,7,8 states

nR cos��� � constant, (7)

whence one obtains, by expanding to first order in
differentials and upon dividing by d�,

tan���
d�

d�
� � 1
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dn
dR� dR

d�
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Using Eq. �5�, one obtains

d�
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� 1 �

R
n

dn
dR

, (9)

and comparing this with Eq. �6� gives

1
r

� cos���
1
n

dn
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. (10)

More generally and more concisely this result may
be written as7

1
r

�
1
n

	̂ � �n, (11)

where 	̂ is an, ad hoc introduced, unit vector perpen-
dicular to the direction of the light ray.

Alternatively, and more physically, one may write

r̂
�r�

� k̂ �
1
n

�n, (12)

where k̂ is the direction of the light ray and the unit
vector r̂ gives the direction in which the light is de-
flected via the right-hand rule of the vector product;
i.e., the tip of the k̂ vector is deflected into the direc-
tion �k̂ 
 �k̂ 
 �1�n��n�.

Hence, the system of coupled differential equa-
tions, Eqs. �5� and �6�, reads as

dR
d�

� R tan���, (13)

d�

d�
� 1 �

R
n

dn
dR

. (14)

Results discussed in this paper are obtained by
solving these equations by fourth-order Runge–Kutta
integration, following the light path from the height
of the observer to the edge of the stratosphere, which
is put at 85 km. The total refraction is obtained as

� � 
Path

�d� � d��. (15)

Another approach is to rewrite Eq. (15) as

� � 
�0

�s �1 �
d�

d��d� � 
�0

�s Rdn�dh
n � Rdn�dh

d�, (16)

Fig. 1. Arbitrary path in Cartesian coordinates and in the spher-
ical coordinates R, �, and �, on which the ray-tracing method is
based.
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where the integration limits �0, the apparent altitude
for the observer, and �s, the value at the edge of the
stratosphere are obtained directly from Eq. �7�. This
is the refraction integral as proposed by Auer and
Standish,5 and it is widely used in this form.4,9,10

The integrand of Eq. �16� is then evaluated for dis-
crete equidistant values of �, and the integral is nu-
merically performed, e.g., by Simpson integration.

At first sight it looks as if explicit ray tracing is
avoided here. But for a practical evaluation of the
refraction integral it is necessary to construct a
lookup table of values of the product n�h��REarth � h�
versus h, from which h can be found for each value of
�, e.g., by Newton–Raphson iteration. Hence, the
information on height, h, is preserved. On the other
hand, the information on horizontal distance, embod-
ied in the parameter �, is not taken along.

Of course both methods do give identical results,
and the choice between one or the other is a matter of
taste. We find full ray tracing, using Runge–Kutta
integration, the more flexible method, as it allows
more easily for generalizations of the atmosphere.
In particular, temperature profiles may be such that
the product n�h��REarth � h� is no longer a monotonic
function of h. Also, the characteristics of the atmo-
sphere may change with distance along the Earth’s
surface so that it is no longer spherically symmetri-
cal. These circumstances may occur in the presence
of strong temperature inversions. In such cases, ray
tracing can still be done, but the refraction integral
approach can no longer be used. The necessary ex-
tensions of the ray-tracing procedure are discussed in
two other papers in this issue, which deal with the
Novaya Zemlya effect.11,12

3. Index of Refraction in the MUSA76 Atmosphere

The atmosphere is considered to be made up of two
ideal gases, dry air and water vapor, with molecular
masses mD and mW, respectively. Given a temper-
ature profile, T�h�, the total pressure must be found
from the differential equation

dP
dh

�
dPD

dh
�

dPW

dh

� �
mD g�h�

k
PD�h�

T�h�
�

mW g�h�

k
PW�h�

T�h�
, (17)

where k is Boltzmann’s constant. The acceleration
of gravity varies with height as

g�h� � g�0�� REarth

REarth � h�
2

. (18)

For the temperature profile we adopt the US1976
atmosphere, modified in the troposphere to allow for
a free choice of the temperature at ground or sea
level. This temperature profile is characterized by
piecewise constant temperature gradients. Atmo-
spheres that are obtained by slight variations of the
US1976 parameters have been considered by Samp-
son13 and have been named modified US1976 stan-

dard atmospheres �MUSSAs�. We shall use one
particular modification, namely, that we make the
sea-level pressure, P0, and the sea-level temperature,
T0, adjustable. In this form, explained in Table 1,
we denote the so modified US1976 atmosphere as
MUSA76. We adopt the values for natural and geo-
physical constants from the latest Handbook of
Chemistry and Physics3:

N � Avogadro’s number,

R � Nk � 8314.472 J kmol�1 K�1

�universal gas constant�,

MD � NmD � 28.964 kg

�mass per kmol of dry air�,

MD � NmW � 18.016 kg

�mass per kmol of water vapor�,

RE � 6356766 m

�the Earth’s mean radius at 45 °N�,

g�0� � 9.780356�1 � 0.0052885 sin2���

� 0.0000059 sin2�2��� m�s2

�� � latitude�,

Once the pressures have been evaluated, the index
of refraction follows from

n��h� � 1 �
1

T�h�
�AD��� PD�h� � AW��� PW�h��. (19)

We name AD and AW the reduced refractivities of
dry air and water. They are expressed in hPa�1 K.
The Handbook of Chemistry and Physics gives AD���
in Edlen’s14 first-order approach to Sellmeier’s form:

AD��� � 10�8�8342.13 � 2406030�130 � 1��2��1

� 15997�38.9 � 1��2��1�
288.15

1013.25
, (20)

Table 1. MUSA76 Atmospherea

h1 �km� h2 �km� dT�dh �K�km� T�h1� �K�

0 HT
a �6.5 T0

HT
a 20 0.0 216.65

20 32 1.0 216.65
32 47 2.8 228.65
47 51 0.0 270.65
51 71 �2.8 270.65
71 85 �2.0 214.65

aP0 and T0 are adjustable. HT � �T0 � 216.65��6.5 km. Stan-
dard values of US1976: P0 � 1013.25 hPa, T0 � 288.15 K, HT �
11 km.
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where � is given in micrometers. A more recent ex-
pression has been given by Ciddor15:

AD��� � 10�8�5792105�238.0185 � 1��2��1

� 1167917�57.362 � 1��2��1�
288.15

1013.25
.

(21)

Of interest here is also the version used in the
Explanatory Supplement to the Astronomical Alma-
nac and by Hohenkerk and Sinclair,4,9,10 which uses
the Cauchy form:

AD��� � 10�8�28760.4 �
162.88

�2 �
1.36

�4 � 273.15
1013.25

.

(22)

In the range of visible light these three expressions
give reduced refractivities that agree at the level of 1
part in 104, and the ray-tracing results that will be
presented in later sections depend only very slightly
upon the choice for one or the other. We shall adopt
the form of Ciddor for our MUSA76 calculations but
make a comparison with the Cauchy form in the case
of the Star Almanac.

The reduced refractivity for water AW is less pre-
cisely known. In the Explanatory Supplement, Ho-
henkerk and Sinclair4,9,10 adopt

AW��� � 10�8�24580.4 �
162.88

�2 �
1.36

�4 � 273.15
1013.25

.

(23)

Recently, Ciddor15 found, by scaling an expression
of Owen16 to fit modern measured values,

AW��� � 1.022 � 10�8�295.235 �
2.6422

�2

�
0.032380

�4 �
0.004028

�6 � 293.15
13.33

. (24)

These expressions give reduced refractivities that
differ by 1%. We adopt Ciddor’s form for our
MUSA76 calculations but shall compare the two ex-
pressions when studying the Star Almanac atmo-
sphere.

4. Calculation of the Dry-Air and Water-Vapor
Pressures

The water-vapor pressure depends explicitly only on
temperature, and Eq. �17� is rewritten as

dPD

dh
�

mD g�h�

k
PD�h�

T�h�
� �

dPW�T�

dT
dT
dh

�
mW g�h�

k
PW�T�h��

T�h�
. (25)

For dry air, PW � 0 and the right-hand side van-
ishes. We shall follow the lines of the Explanatory
Supplement4 and allow for a water-vapor contribution

only in the troposphere. The relative humidity, RH,
is taken constant right up to the tropopause. The
water-vapor pressure depends then not explicitly on
height, but only implicitly, via the temperature gradi-
ent. This is a simplifying assumption that in many
cases allows for an analytic evaluation of the pressure.

We shall consider three expressions that approxi-
mate the experimental data of saturated water vapor
�in units of hPa�. The first is a power-law expression
with two adjusted parameters, hereafter referred to as
PL2:

PW
sat�T� � � T

247.1�
18.36

, (26)

which has been used in this form by several au-
thors.4,9,10

A physically more realistic expression is the
Clausius–Clapeyron equation:

PW
sat�T� � exp�a � b�T�, (27)

with a � 21.39 and b � �mW�k�LWD � 5349 K�1,
where LWD is the latent evaporation heat in J�kmol,
taken constant at its average value over the fit inter-
val. In the following we shall refer to this two-
component Clausius–Clapeyron fit as CC2.

The flexibility of the fit function is increased by
allowing more powers of T in the exponential.
Ciddor15 finds that a good fit is obtained with

PW
sat�T� � exp� AT 2 � BT � C � D�T�, (28)

with A � 1.2378847 10�5 K�2, B � �1.9121316 10�5

K�1, C � 29.33194026, and D � �6.3431645 103 K.
This equation is still basically of the Clausius–
Clapeyron form, and we refer to it as CC4.

Data are shown in Fig. 2, together with these fits.
It is seen that the CC4 gives an excellent fit over the
full temperature range of the data. The CC2, ob-
tained from a fit to the data below 50 °C, describes the
data equally well in this region. The PL2 curve does
not follow the general shape of the vapor pressure and
has been chosen to match the data in the temperature
region where observations are most likely to be made.

In the following subsections we shall review ways to
solve Eq. �25�, both numerically and analytically.
The latter differs slightly from the approach in the
Explanatory Supplement, where the dependence of the
acceleration of gravity on height has been neglected.

A. Finding the Pressures by Numerical Integration

Equation �25� is a first-order differential equation in
PD. The right-hand side is only nonvanishing in the
troposphere, where it can be evaluated for each
height. Hence, Eq. �25� can be solved by standard
numerical techniques. We choose the fourth
Runge–Kutta method. The integration is subject to
the condition that for chosen total sea-level pressure,
P0, and temperature, T0,

PD�0� � P0 � PW�T0� � P0 � RH � PW
sat�T0�. (29)
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For later use PD�h� is then found by interpolation in
a lookup table. PW�T� is found directly from its an-
alytical expression, which is taken as either the PL2
form of Eq. �26�, the CC2 form of Eq. �27�, or the CC4
expression of Eq. �28�.

B. Analytical Solutions for Dry Air

Numbering the seven different constant temperature-
gradient intervals of the MUSA76 atmosphere by j �
1–7, and denoting by h1j and T1j the height and the
temperature at the bottom of each interval, we intro-
duce the following variables and constants:

hj � h � h1j dim. m,

aj �
1

T1j
�dT

dh� j

dim. m�1,

cj �
mD g�h1j�

kT1j
dim. m�1,

bj �
1

RE � h1j
dim. m�1,

�j � �
ajcj

�aj � bj�
2 dimensionless,

�j � �
bj

�aj � bj�
dimensionless.

For dry air the differential equation, Eq. �25�, re-
duces to

1
P�hj�

dP�hj�

dhj
�

�cj

�1 � ajhj��1 � bjhj�
2 (30)

and has the solution

P�hj� � P�hj � 0��1 � ajhj

1 � bjhj
��j

exp��
cj�jhj

1 � bjhj
� . (31)

Note that these results reduce to the expressions
given in the Explanatory Supplement when neglect-
ing the dependence of the acceleration of gravity on
height. Then, bj 3 0, and �j 3 �cj�aj � �j and

P�hj� � P�hj � 0��T�hj�

T1j
��j

�if aj � 0�, (32)

P�hj� � P�hj � 0�exp��
mD g�h1j�hj

kT1j
� �if aj � 0�.

(33)

C. Analytical Solutions for the Water-Vapor Correction

The water-vapor correction is applied only for the
troposphere. Equation �25� may be rewritten to a
differential equation in T, making use of the depen-
dence of temperature on height. The result is

dPD

d�T�T0�
�

�D PD

T�T0�1 � �T�T0�
2 � �

dPW

d�T�T0�

�
�W PW

T�T0�1 � �T�T0�
2 , (34)

where �W � �mW�mD��D and where we have dropped
the index referring to the interval number, as we
consider only the troposphere. The general solution
of the homogeneous equation, with vanishing right-
hand side is

PD�T��hom.� � C�T�T0�
�D�1 � ���D exp� �D

1 � ��
� �1 � �T�T0�

��D exp��
�D

1 � �T�T0
� ,

(35)

which also would follow from Eq. �31�. It differs
from the result of the Explanatory Supplement by the
presence of the additional factor

Z��D, �, T�T0� � �1 � ���D exp� �D

1 � ��
� �1�T�T0�

��D exp��
�D

1 � �T�T0
� .

(36)

Throughout the troposphere, with values �D �
5.1829 and � � 0.0069255, Z��D, �, T�T0� never dif-
fers from unity by more than 10�4. Neglecting the
variation of gravitation with height means �3 0 and
Z��D, 0, T�T0� � 1 and with �D3 �, Eq. �35� reduces
to the result of the Explanatory Supplement.

Fig. 2. Saturated vapor pressure of water. The data are from
The Handbook of Chemistry and Physics.3 The curves represent
the different formula’s: the power-law expression �PL2�, the two-
and four-parameter Clausius–Clapeyron forms CC2 and CC4, dis-
cussed in the text.

358 APPLIED OPTICS � Vol. 42, No. 3 � 20 January 2003



1. Water-Vapor Correction from the Power-Law
Expression
To arrive at the general solution of the full Eq. �34�,
a special solution of it must be added to the above
general solution of the homogeneous equation. In
the Explanatory Supplement, this has been chosen to
obey the same power-law expression as the saturated
water-vapor expression itself:

PD�T��spec.� � DPW�T� � DPW�T0��T�T0�
�

with PW�T0� � RH�T0�247.1��, (37)

with � � 18.36.
This does not allow for an obvious special solution

of Eq. �34�. Observing, however, that Z��, �, T�T0�
differs from unity by no more than 3 
 10�4, an
equally good fit to the water-vapor pressure data in
Fig. 2 is provided by

PW�T� � RH � �T0�247.1���T�T0�
�Z��, �, T�T0�.

(38)

Then it follows that a full solution of Eq. �34� will
have the form

PD�T� � C�T�T0�
�DZ��D, �, T�T0�

� D�T�T0�
�Z��, �, T�T0�, (39)

and the constants C and D follow from Eqs. �34� and
�29�:

D � PW�T0���W � �

� � �D
� , (40)

C � P0 � PW�T0� � D. (41)

2. Water-Vapor Correction from the CC2
Clausius–Clapeyron Expression
Next we attempt to base the water-vapor correction
on the Clausius–Clapeyron CC2 form, which fits the
data over a much wider range. Thus, taking PW�T0�
from Eq. �27�, we anticipate the full solution to be

PD�T� � C�1 � ���D exp� �D

1 � ��
� � T�T0

1 � �T�T0
��D

exp��
�D

1 � �T�T0
�

� f �T� PW�T0�exp�b� 1
T0

�
1
T�� . (42)

By inserting this special solution into Eq. �34�, one
finds that f �T� must satisfy

df
dT

� � �D

T�1 � �T�T0�
2 �

b
T 2�f �T�

� � �W

T�1 � �T�T0�
2 �

b
T 2� . (43)

For this equation an analytical solution for f �T� is
not obvious. If, however, we make the small approx-

imation that we neglect here the variation of the
gravitational acceleration and put � � 0, the solution
is

f �T� � �1 � ��D � �W

�D
� 1F1�1, �D � 1;

b
T� , (44)

where 1F1 is the confluent hypergeometrical func-
tion. The general solution for PD is therefore

PD�T� � C�1 � ���D exp� �D

1 � ��
� � T�T0

1 � �T�T0
��D

exp��
�D

1 � �T�T0
�

� �1 � ��D � �W

�D
� 1F1�1, �D � 1;

b
T��

� PW�T0�exp�b� 1
T0

�
1
T�� . (45)

The constant C is found from Eq. �29� by inserting
T � T0:

C � P0 � ��D � �W

�D
� 1F1�1, �D � 1;

b
T0
�PW�T0�. (46)

5. Index of Refraction, Curvature, and Discontinuities

In Section 4 the derivations of the partial pressures
for dry air and for the water-vapor correction have
been dealt with in some detail. These may be
found either fully numerically or fully analytically.
In the latter case it was found necessary to make
minor adjustments to the water-vapor expression.
By inspection of the results it follows that the an-
alytical and the numerical methods give identical
results. As an example, the refractions obtained
at 0° apparent altitude �90° zenith angle�, which
will be discussed in Section 6, differ by less than
0.0001 arcmin, both for dry air and for moist air.

With the pressures determined by either of the two
methods, the index of refraction is found as a function
of height from Eq. �19�. Its derivative and hence the
curvature are found by differentiation, which must be
done numerically if the numerical method was used
to obtain the pressures and may be done analytically
if they were obtained analytically.

The result for the US1976 standard atmosphere
is shown in Fig. 3. Since the temperature profile
has piecewise constant temperature gradients, it
shows kinks at the border between two such inter-
vals. The index of refraction has kinks at the same
places, but the curvature, being proportional to the
logarithmic derivative, �1�n��dn�dh, becomes discon-
tinuous. This necessitates some special care for in-
tegration steps that lead across the border between
two intervals.
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When evaluating the refraction integral, Eq. �16�,
one may conveniently split the integral into a sum over
all intervals, finding the integration limits of each in-
terval by use of Eq. �7�. When doing full ray tracing,
using numerical integration, one may similarly make
an integration step end on the border between two
intervals and let the next step begin there.

Another and easier way is to make the replacement

The expression at the right-hand side is exactly
equal to the derivative when the latter is locally a
polynomial of third order or less. It is therefore
perfectly adequate to replace dn�dh everywhere
when the latter is continuous. However, across a
discontinuity the replacement has the effect of
smoothing as shown in the inset of Fig. 3. The
effect of this replacement on the ray tracing may be
judged best from its effect on the refraction integral,
Eq. �16�: the discontinuity is replaced with a
smooth connection, which does not change the inte-
gral across it. When �h is of the same order as the
integration step size, the integrand does not now
vary more violently than a third-order polynomial.
Since the Runge–Kutta method is still exact for a
fourth-order polynomial, it may now be applied
without making extra provisions to let integration
steps end precisely on the border between intervals.
The same is true if one wishes to evaluate the re-
fraction integral: There is no longer a need to split
the integral into the separate contributions of the
different intervals.

6. Results

In this section we present refractions for the
MUSA76 atmosphere and study their dependence on
sea-level temperature and pressure. We make a
comparison of refractions obtained with the MUSA76
with those of the Star Almanac1 and the Nautical
Almanac.2 In both cases we make a comparison
with the Pulkovo tables.6

As pointed out at the end of Section 5, results do not
depend on whether the pressures have been obtained
by numerical integration or by their analytical expres-
sions. The results presented in the following have
been obtained with numerically determined pressures.
Unless specified otherwise, a wavelength of 0.574 �m,
conventionally chosen to represent mean star light, is
used along with the CC4 expression of Eq. �28� for the
water-vapor correction, when applicable.

A. Dry-Air Refractions for the MUSA76 Atmosphere

Refractions for low apparent altitude, for MUSA76
atmospheres of different sea-level temperatures and
a fixed sea-level pressure of 1013.25 hPa, are shown

Fig. 3. Curvature, 1�r � �1�n�dn�dh in units of 1�REarth, of a
locally horizontal ray for the US1976 standard atmosphere. The
procedure to cope with the discontinuities, illustrated in the inset,
is discussed in the text.

Fig. 4. Dry-air refractions for low apparent altitudes, calculated
on the basis of the MUSA76 atmosphere for sea-level temperatures
�25 °C, �5 °C, 15 °C �standard�, 35 °C, and 55 °C. The sea-level
pressure is 1013.25 hPa in all cases. The wavelength has been
chosen as � � 0.574 �m. For comparison the standard Nautical
Almanac refraction is shown.

dn
dh
3

27�n�h � 1⁄2�h� � n�h � 1⁄2�h�� � �n�h � 3⁄2�h� � n�h � 3⁄2�h��

24�h
. (47)
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in Fig. 4. A strong temperature dependence is evi-
dent. For comparison, the standard Nautical Alma-
nac refraction,2 meant for 10 °C and 1010 hPa, is
shown. A more detailed comparison with the Nau-
tical Almanac is given in a later subsection.

Refractions for the whole range of apparent alti-
tudes are given in Table 2 for the US1976 atmo-
sphere, i.e., for the standard choice of 15 °C and
1013.25 hPa.

It is sometimes desirable, given a tabulated stan-
dard refraction for �P0, T0�, to make a quick estimate
for the refraction at different pressure and tempera-
ture, �P1, T1�. The Nautical Almanac has a special
table for this purpose. The Pulkovo tables6 give a
relationship in the form of a scaling law,

��P1, T1� � �P1

P0
���T0

T1
��

��P0, T0�, (48)

where � and � �which is the quantity A in the Pulkovo
tables� depend on the angle of observation. While �
is close to unity for all observation angles, � rises
rapidly when approaching 0° apparent altitude.

We investigate this form for the MUSA76 atmo-
sphere. In Fig. 5, panels �a� and �b�, the scalings
with pressure and temperature are investigated for
the refractions at 0° apparent altitude. We find best
values � � 1.0856 and � � 1.7081. This is close to
the fourth edition of the Pulkovo tables,17 which at 0°
gives � � 1.0859 and � � 1.7046. In the fifth edi-
tion6 � has been made to depend also on pressure and
is given as 1.0836 at 1000 hPa. Also, � is given an

Fig. 5. �a� Dependence of the refraction at 0° apparent altitude on P0, at T0 � 288.15 °K. �b� Its dependence on T0 at P0 � 1013.25 hPa.
�c� Apparent altitude scaling factors, relative to the standard T0 � 288.15 °K, P0 � 1013.25 hPa, for different sea-level temperatures and
pressures: �a� t0 � �25 °C, P0 � 1013.25 hPa, �b� t0 � �5 °C, P0 � 1013.25 hPa, �c� t0 � 35 °C, P0 � 1013.25 hPa, �d� t0 � 55 °C, P0 �
1013.25 hPa, �e� t0 � 15 °C, P0 � 1073.25 hPa, �f � t0 � 15 °C, P0 � 953.25 hPa. The fits, discussed in the text, are shown as dashed curves.

Table 2. US1976 Standard Atmosphere Refractionsa

Zenith Ang.
�deg�

Refraction
�arcsec�

Zenith Ang.
�deg�

Refraction
�arcsec�

72 173.93
5 5.00 74 196.49

10 10.07 76 225.00
15 15.31 78 262.20
20 20.79 80 312.78
25 26.64 81 345.52
30 32.98 82 385.34
35 39.98 83 434.68
40 47.90 84 497.25
45 57.07 85 578.72
50 67.98 86 688.25
55 81.40 87 841.19
60 98.62 88 1064.59
65 121.87 89 1408.82
70 155.61 90 1974.35

aP0 � 1013.25 hPa, t0 � 15 °C, 0% rel. humidity, lat. � 45°, � �
0.574 �m, refractivity from Ref. 15.
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additional dependence on temperature. Its value at
10 °C is 2.8053 for 0° apparent altitude.

This scaling does not come as a surprise: For nor-
mal atmospheres the radius of curvature of a light
ray is approximately 5–7 times larger than the
Earth’s radius, and under these circumstances the
refraction is basically the path integral of dn�dh as
follows from Eq. �16�.

Most of the refraction is accumulated in the tropo-
sphere, where

dn
dh

� �AD

P
T 2 �dT

dh
� B� , (49)

with B � mDg�k � 3.4177 10�2 K�m. Hence, for
low altitudes exponents not far from � � 1 and � � 2
should be expected to be adequate for Eq. �48�, as
indeed they are found.

Next we investigate the scaling at apparent alti-
tudes, �, different from 0°. Without loss of general-
ity one may put

��P1, T1, �� � �P1

P0
���T0

T1
��

��P0, T0, ���. (50)

With the vertical scaling fixed at 0°, this means
finding the ratio ����, by which the apparent altitude
scale �horizontal� has to be compressed or decom-
pressed. Panel �c� of Fig. 5 shows the results for
different temperature–pressure combinations. It is
clear from the figure that the altitude scaling is im-
portant and that its neglect is not justified.

We find that the altitude scaling can, with a high
degree of accuracy, be described by

tan���� � �P1

P0
���T0

T1
�	

tan���. (51)

Fits are shown in Fig. 5�c�. The values for � and
	 that give the best fits, vary little. Using the re-
fractions from the US1976 atmosphere as a refer-
ence, from which refractions for a different
temperature and pressure are to be estimated, we
find as best average values � � 0.087 and 	 � 0.690.

Although we have obtained the exponents �, �, �,
and 	 from independent fits, they are not uncorre-
lated: In the limit of large altitudes �small zenith
angles�, the refraction itself becomes to a very good
approximation proportional to �P�T�tan�1���.8,18

Hence, from Eqs. �50� and �51�, one should have � �
� � 1 and � � 	 � 1, which is found to be accurately
fulfilled by the values that we derived above.

Thus we have arrived at a combined scaling for the
MUSA76 refractions with sea-level pressure and
temperature, expressed in Eqs. �50� and �51�, that
applies for all altitudes. It gives relative errors less
than 5 
 10�3 for all altitudes, when applied for
temperature shifts less than �40 °C and even less
than 1 
 10�3 for � � 15° and a temperature shift of
less than �20 °C. The scaling with pressure in-
duces no relative errors in excess of 1 
 10�4 for
pressure shifts up to �60 hPa.

B. Water-Vapor Correction

The MUSA76 refraction calculations of Subsection
6.A have been repeated, but now for a relative hu-
midity of 100%. In Section 3 we discussed three
different expressions for saturated water vapor, the
power-law form, PL2 �Eq. �26�� and the two- and four-
parameter Clausius–Clapeyron expressions, CC2
�Eq. �27�� and CC4 �Eq. �28��.

The difference between the dry-air and the moist-
air refractions is shown in Fig. 6. There, the case for
a ground temperature of �25 °C has been left out, as
the difference was too small to be drawn. The
water-vapor correction increases quickly with tem-
perature. At 15 °C it is just below 0�.3, and the dif-
ference between the results for the three different
water-vapor formulas may be neglected. At 35 °C
the difference between the PL2 on the one hand and
the CC2 and CC4 on the other becomes just notice-
able. It is only at very extreme temperatures, such
as 55 °C, that one sees a difference between the CC2
and the CC4 results. Of the three, the Clausius–
Clapeyron expression CC4 gives the smaller contri-
bution. Whenever one finds the difference
important the Clausius–Clapeyron forms must be
preferred over the power-law expression, because of
their superior agreement with the data �Fig. 2�.

C. Comparison for the Star Almanac Atmosphere

The Star Almanac for Land Surveyors1 was first pub-
lished in 1951. It gives refraction tables for zenith
angles up to 80°, which are based on the tables of

Fig. 6. Difference between refractions for dry air and for 100%
humidity for the different equations for saturated water vapor,
PL2, CC2 and CC4. The basis is the MUSA76 atmosphere for
temperatures �a� �5 °C, �b� 15 °C �standard�, �c� 35 °C, and �d�
55 °C at a sea-level pressure of 1013.25 hPa in all cases. � �
0.574 �m.
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Harzer from 1924.19 The Star Almanac adopts a
sea-level temperature of 7 °C and a sea-level pressure
of 1005 hPa. The wavelength and the humidity are
not specified.

Hohenkerk and Sinclair9 have found that the Star
Almanac refractions are closely reproduced under the
following additional assumptions: The temperature
lapse rate in the troposphere is �0.0065 K�m. From
11 km upwards the temperature is kept fixed. The
wavelength is taken as � � 0.574 �m and the relative
humidity as 80%. The dry-air and water-vapor re-
duced refractivities are taken in the Cauchy forms,
Eqs. �22� and �23�. The following values for natural
and geophysical constants are used:

R � Nk � 8314.36

�universal gas constant�,

Md � Nmd � 28.966

�molar weight of dry air�,

Mw � Nmw � 18.016

�molar weight of water vapor�,

REarth � 6,378,120 m

�average radius of the Earth�,

g � 9.784�1 � 0.0026 cos�2���

�� � obs. latitude�.

The observer’s latitude was chosen as 50°. The
variation of the gravitational acceleration with
height is neglected in the above formulation.

The calculations of Hohenkerk and Sinclair9 use
the refraction integral approach, discussed in Section
2, and were made for zenith angles from 10° to 80°.
They find complete agreement with the Star Almanac
tables, which give refractions in arcseconds, rounded
to the nearest integer.

In the second column of Table 3 we present our
calculations for the above specified Star Almanac at-
mosphere, for zenith angles from 5° to 90°. For all
zenith angles, which are also given by Hohenkerk
and Sinclair,9 we find exactly the same values, till in
the last decimal. Given this agreement, we may
consider column 2 as representative for the Star Al-
manac atmosphere.

Columns 3–5 of Table 3 show the corresponding
calculations for the MUSA76 atmosphere, with the
sea-level temperature and pressure adjusted to the
Star Almanac standards. For column 3 this is the
only change: The reduced refractivities, AD and AW,
are still in the forms of Eqs. �22� and �23�, and the
natural and geophysical constants are the same as in
Ref. 9. The equivalent result for the Clausius–
Clapeyron form CC2 �Eq. �27�� is given in column 4,
where also the natural and geophysical constants of
Ref. 3 have been adopted. Changing then only the
CC2 water-vapor correction for CC4 gives the results
of column 5. A comparison with the Pulkovo tables
is made in column 6.

The differences between the values in columns 2–5

are very small. Yet, it is interesting to study the
effect of a stepwise parameter change when going
from the Star Almanac atmosphere to the MUSA76
atmosphere. This is shown in Table 4 for the refrac-
tions at 90° zenith angle.

We find that most of the changes have an effect of
less than 1 arcsec. There are two exceptions: The
different choice of the acceleration of gravity at sea
level, embodied in g���, increases the refraction by 3
arcsec. It is compensated by the change in the mean
radius of the Earth, which makes a 4-arcsec differ-
ence, but of opposite sign. The sum of the absolute
values of all changes is nearly 10 arcsec, but it is by

Table 3. Comparison with the Star Almanac Atmospherea

z �deg�
Star Alm.b

�arcsec�
MUSA76c

�arcsec�
MUSA76d

�arcsec�
MUSA76e

�arcsec�
Pulkovof

�arcsec�

5 5.10 5.10 5.09 5.09 5.09
10 10.27 10.27 10.27 10.27 10.26
15 15.60 15.60 15.60 15.60 15.60
20 21.19 21.19 21.19 21.19 21.18
25 27.15 27.15 27.15 27.15 27.14
30 33.61 33.61 33.61 33.61 33.59
35 40.76 40.76 40.75 40.75 40.74
40 48.83 48.83 48.82 48.82 48.80
45 58.17 58.17 58.16 58.16 58.14
50 69.29 69.29 69.28 69.28 69.26
55 82.98 82.98 82.97 82.97 82.94
60 100.53 100.53 100.51 100.51 100.48
65 124.25 124.24 124.22 124.22 124.18
70 158.66 158.65 158.63 158.63 158.57
75 214.03 214.01 213.98 213.98 213.91
80 319.18 319.15 319.10 319.10 319.03
85 591.90 591.80 591.71 591.71 592.03
90 2046.04 2045.16 2044.88 2044.80 2118.02

aP0 � 1005 hPa, t0 � 7 °C, 80% rel. humidity, dT�dh � �0.0065
K�m, lat. � 50° and � � 0.574 �m.

bRecomputed Star Almanac values �this study and Ref. 9�.
cUsing PW

sat � �T�247.1�18.36 and AD��� and AW��� from Eqs. �22�
and �23�.

dUsing the CC2 form for PW
sat. AD���2 and AW��� from Eqs. �21�

and �24�.
eUsing the CC4 form for PW

sat. AD��� and AW��� from Eqs. �21�
and �24�.

fPulkovo refraction tables, 5th ed., 1985 �Ref. 6�.

Table 4. Stepwise Change from Star Almanac to MUSA76

Parameter Change from Into
��z � 90°�

�arcsec� Atmosphere

— — — 2046.04 Star Alm.
Integration lim.

�km�
80 85 2046.04

R �J kmol�1

K�1�
8314.36 8314.472 2046.03

MD �kg� 28.966 28.964 2045.93
RE �m� 6378120 6356766 2041.88
g�0, � � 50°� 9.78842 9.81065 2045.07
g�h� g�h� � g�0� Eq. �18� 2044.18
PW

sat�T� Eq. �26� Eq. �28� 2044.07
AW ��� Eq. �23� Eq. �24� 2044.30
AD��� Eq. �22� Eq. �21� 2043.83
T-profile Star Alm. MUSA76 2044.80 MUSA76
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cancellation of the different changes that the end
results for the Star Almanac and for the MUSA76
atmosphere differ only by just over 1 arcsec.

The choice of the temperature profile deserves spe-
cial attention. After all, this is the main feature that
distinguishes the two atmospheres. The difference
in refraction, when using one or the other, is just �1
arcsec. But if we would shift the sea-level temper-
ature downwards, from 7 to �10 °C, this difference
would be more than 3 arcsec. The reason is that, in
this example, the temperature profile of the upper
part of the atmosphere is shifted together with that of
the tropopause for the Star Almanac atmosphere,
while for the MUSA76 atmosphere it is left un-
changed and it is the height of the troposphere itself
that is lowered. Hence, above the tropopause, the
temperature profile of the Star Almanac is, in its
entirity, lower than that of the MUSA76 atmosphere
and progressively so, the lower one chooses the sea-
level temperature.

The refractions from the Pulkovo tables �5th ed.�,
column 4 in Table 3, agree well with those for the Star
Almanac and MUSA76 atmospheres up to a zenith
angle of over 85°. In the last few degrees it increases
considerably faster and gives a 74-arcsec larger re-
fraction at the horizon. This difference can be
traced back to the a difference in the low-altitude
value of the temperature-scaling factor �, which for
the Pulkovo tables is quite different from that of the
MUSA76 atmosphere, as discussed above.

D. Comparison for the Nautical Almanac Atmosphere

Since 1958, the year that the UK and the U.S. Nau-
tical Almanacs became identical, the refraction tables
have been the same as they are today. They are
based on Garfinkel’s theory20 of 1944 and hence pre-
date his second article of 1967.21 The temperature
profile on which they are based is similar to that of
the Star Almanac, but for t0 � 10 °C and P0 � 1010
hPa. An important difference is the temperature
lapse rate in the troposphere, which is taken as
�0.005694 K�m. Garfinkel’s 1944 study was based
on an adopted refractive index at 0 °C and 1013.25
hPa of n � 1.00029429, which has been significantly
improved since.

Hohenkerk and Sinclair9 have recomputed some of
the refractions, notably for large zenith angles, and
find general, though not exact, agreement with Gar-
finkel’s program.21 To be consistent with the Nau-
tical Almanac tables, they had to assume a wave-
length of 0.50169 �m.

We have repeated these calculations with our own
program. Again, as in the case of the Star Almanac,
we find exact agreement with the results of Hohen-
kerk and Sinclair,9 and we will use these results to
represent the Nautical Almanac refractions. They
are given in Table 5 in columns 2 and 3. In column
4 refractions based on the MUSA76 atmosphere are
given, for � � 0.574 �m, and the corresponding re-
fractions from the Pulkovo tables are shown in col-
umn 5.

Contrary to the case in Subsection 6.C, where we

studied the Star Almanac, the differences are large,
especially for large zenith angles. The effect of
choosing a different temperature lapse rate in the
troposphere is found to be important. For z � 90°,
the difference is more than 24 arcsec as seen from
columns 1 and 2.

Using the same wavelength of 0.50169 �m, the
MUSA76 atmosphere gives a refraction of 2039.32 at
the horizon, close to the result for the Nautical Al-
manac atmosphere with a lapse rate of �0.0065 K�m.
This is consistent with our previous comparison for
the Star Almanac. Hence, the difference of the ho-
rizon refractions in columns 2 and 3 is almost entirely
due to the different choice of the wavelength.

The agreement of the Pulkovo tables with the
MUSA76 refractions is reasonable up to above 85°
zenith angle. Its increase in the last few degrees is
again much steeper. While at z � 85° it gives the
same refraction as the Nautical Almanac, it is some
20 arcsec higher at the horizon.

E. Refraction and Temperature Gradient

The temperature gradient in the troposphere is never
really constant. Especially in the lowest few hun-
dred meters it may deviate considerably from the
mean value of �0.0065 K�m. Day–night changes
and seasonal changes may cause a considerable vari-
ation in refraction at low altitudes. This has all
been known for a long time. For an excellent review
the reader is referred to the article of Fletcher,22 in
which the variability of low-altitude refractions is
explained in terms of the temperature gradient near
sea level.

We are now in the position to illustrate this effect

Table 5. Comparison with the Nautical Almanac Atmospherea

z �deg�
Naut. Alm.b

�arcsec�
NAO63c

�arcsec�
MUSA76d

�arcsec�
Pulkovoe

�arcsec�

5 5.10 5.10 5.07 5.10
10 10.28 10.28 10.22 10.28
15 15.62 15.62 15.53 15.62
20 21.21 21.21 21.09 21.21
25 27.18 27.18 27.02 27.17
30 33.64 33.64 33.45 33.64
35 40.79 40.79 40.56 40.79
40 48.87 48.87 48.60 48.87
45 58.23 58.23 57.89 58.22
50 69.36 69.36 68.96 69.35
55 83.06 83.06 82.58 83.04
60 100.62 100.62 100.05 100.60
65 124.36 124.36 123.64 124.34
70 158.80 158.80 157.88 158.77
75 214.20 214.20 212.96 214.16
80 319.20 319.39 317.52 319.35
85 592.21 591.92 588.37 592.12
90 2065.77 2041.04 2027.07 2086.63

aP0 � 1010 hPa, T0 � 10 °C, 0% rel. humidity, lat. � 50°,
dT�dh � �0.005694 K�m and � � 0.50169 �m.

bRecomputed results, present study and Ref. 9.
cFor dT�dh � �0.0065 K�m, present study and Ref. 9.
dWith � � 0.574 �m and AD��� from Eq. �21�.
ePulkovo refraction tables, 5th ed., 1985 �Ref. 6�.
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by means of ray-tracing calculations. In this subsec-
tion we study the effect of the temperature gradient
on low-altitude refraction. To do this, we generalize
the temperature profile in the troposphere by writing
it as

T�h� � T0 � 0.0065h � ��dT
dh�0

� 0.0065�
� � h�HT � h�

HT�1 � h�HC�� , (52)

where the final term is an addition to the standard
temperature profile of the troposphere. The addi-
tional term vanishes at sea level, h � 0, and at the
tropopause, h � HT. Thus, the added temperature
profile leaves intact the average temperature lapse
rate in the troposphere, but at sea level the temper-
ature gradient is now �dT�dh�0. The parameter HC
determines the shape of the added temperature pro-
file and gives roughly the height of the surface layer
where the temperature gradient deviates from the
troposphere average.

In Fig. 7, left panel, such temperature profiles are
shown, for t0 � 15 °C and 1013.25 hPa, the standard
of the US1976 atmosphere. The sea-level tempera-
ture gradient is varied in steps of 0.010 K�m around
the standard value of �0.0065 K�m. The parameter
HC has been set at 1000 m, confining the most drastic
variation in temperature gradient to the lowest 2 km.

The effect on the refraction is shown in the right

panel of Fig. 7. It must be compared with Fig. 4,
where the effect of shifting the sea-level temperature
is shown. One observes that shifting the sea-level
temperature gradient, but not the temperature itself,
has a very drastic effect, but only in the region of the
lowest few degrees in apparent altitude.

There have been many attempts, in all times, to
relate refractions, obtained by accurately timing the
moment of sunset, with the predictions based on at-
mospheric models. This example shows that such
studies are sensitive to the temperature gradient just
above ground or sea level, rather than to the global
features of the atmospheric model.

Especially when the moment of sunset is taken as
the instant of a green flash, one should be careful.
The green flash is normally not seen when the atmo-
sphere is “standard,” but its occurrence is usually
associated with a nonstandard temperature gradi-
ent.12

7. Summary

We have studied the atmospheric refraction for the
US1976 atmosphere, generalized to deal with arbi-
trary sea-level temperature and pressure. The so
modified atmosphere has been named MUSA76.
The presented method uses full ray tracing, based on
the fourth-order Runge–Kutta method. The rela-
tion of the ray-tracing method to the usual evaluation
the refraction integral is discussed in some detail.

Analytical and numerical procedures for evaluat-

Fig. 7. Left, different temperature profiles in the troposphere for P0 � 1013.25 hPa, T0 � 288.15 K and temperature gradients, ranging
�from left to right� from �0.0465 °C�m to 0.0335 °C�m in steps of 0.010 °C�m. The temperature profiles are obtained as in Eq. �52�, with
HC � 1 km. Right, the corresponding dry-air refractions, increasing as the sea-level temperature gradient increases.
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ing, for a given temperature profile, the pressure at
all heights are presented. Three different forms of
the water-vapor correction are considered, first the
usual power-law expression4 and second the
Clausius–Clapeyron forms with two and with four
adjusted parameters.

Comparisons are made with the refractions of the
Star Almanac, the Nautical Almanac, and the
Pulkovo tables. Differences with the results from
the MUSA76 atmosphere are discussed and their or-
igins investigated.

A computer-based program, REF2001, for calculat-
ing refractions in the MUSA76 atmosphere as de-
scribed in this paper, is available from the author.23

The author thanks Waldemar Lehn, Günther Kön-
nen, and Catherine Hohenkerk for many useful dis-
cussions.
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