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Air mass numbers have traditionally been obtained by techniques that use height as the integration
variable. This introduces an inherent singularity at the horizon, and ad hoc solutions have been invented
to cope with it. A survey of the possible options including integration by height, zenith angle, and
horizontal distance or path length is presented. Ray tracing by path length is shown to avoid singularities
both at the horizon and in the zenith. A fourth-order Runge—Kutta numerical integration scheme is
presented, which treats refraction and air mass as path integrals. The latter may optionally be split out
into separate contributions of the atmosphere’s constituents. © 2008 Optical Society of America
OCIS codes: 000.3860, 000.4430, 010.1290, 010.4030.

1. Introduction

Air mass numbers have traditionally been obtained
via air mass integrals [1-3]. A recent publication by
Kivalov [4] is, to our knowledge, the first-ever study
to calculate air masses by ray tracing. His method
introduces ray curvature explicitly by modeling path
elements as circle segments. In doing so, the notori-
ous singularity at the horizon (z = 90°) that has
plagued earlier investigations [1-3] is avoided. In the
end these circle segments are replaced by their
chords, hence by their derivative at mid-interval. The
intrinsic accuracy of the method is therefore of second
order; i.e., truncation errors scale as the cube of the
integration step size.

The curious aspect of Kivalov’s work is that the
need to remedy this horizon singularity does only
exist by his own choice to use height above ground (or
sea level) as the integration variable. In doing so, he
follows a tradition in air mass studies: Kasten [1],
Link and Neuzil [2], and Kasten and Young [3] made
the same choice and had to devise a special treatment
for the horizon region. Studies on refraction and mi-
rages, on the other hand, have mostly been performed
in schemes where the horizon region is regular but
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where a singularity in the zenith itself (z = 0°) may
exist.

In this Comment I review shortly the possible in-
tegration schemes and the strategies that have been
put into practice. I point out that (1) choosing path
length as the integration variable naturally avoids
all singularities; (2) standard higher-order Runge—
Kutta integration provides a natural solution strat-
egy, wherein refraction and air masses may be taken
along as path integrals; and (3) since all integrations
are performed in parallel, mass integrals for different
constituents such as dry air, water vapor, ozone, NO,,
CO,, and aerosols may be obtained separately if den-
sity profile models are available.

2. Elements of Ray Tracing

Figure 1 illustrates the (increments of) variables of
the light ray: ¢ is the polar angle measured from the
Earth’s center, x = Ry} is the distance along the
Earth’s surface, and B is the tilt angle measured from
the local horizontal. Its complement is the local ze-
nith angle: z = 90° — B, and As is the length of the
trajectory element. These describe the geometry of
the path. The aim of ray tracing is usually to deter-
mine path integrals, such as the refraction integral
¢ = J(dB — do) (actually, when counted as positive,
the refraction is —§) and the air mass integral
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Fig. 1. Ray segment and explanation of its parameters.

M = Jpds, where p is the density. For any path the
following differential equations govern its geometry:

dh

do = (R, + h)tan(B), (1a)
g (Rot+h)

% = 1 + TS(B), (].b)
ds (Ro+h)

% = 7COS(B) . (1c)

In these equations, 1/r is the local curvature of the
ray, and it is here that the physics enters. For a

spherically symmetric atmosphere the refractive in-
dex n does not depend on ¢. Snell’s law gives n(R,
+ h)cos(B) = constant along the ray, from which
follows its curvature:

1 1dn
»=cos(B). q5,- (2a)

More generally, when the characteristics of the at-
mosphere vary not only with height but in addition
with distance along the Earth’s surface, the curva-
ture is

1 1[ dn  sin(B) an]. (%b)

r n COS(B)ah (Ro+h) dd
Ray tracing requires following the path backward
from the observer by use of Eqgs. (1) and using any of
the four geometric variables, h, B, ¢, or s, as the
integration variable. Refraction and air mass may
conveniently be viewed as path integrals in this pro-
cedure. Integration is usually carried out up till a
height where the contributions to the refraction and
air mass integrals become negligible. In practice a
height of 85 km is sufficient.

Table 1 lists for each of the four integration
schemes the sets of coupled linear differential equa-
tions that are to be solved in parallel. The most
widely used method for such schemes is fourth-order
Runge—Kutta integration, a family of procedures that
dates back to 1895 [5] and to which numerous refine-
ments have since been made, which are to be found in
textbooks on numerical methods.

Table 1. Ray Tracing Integration Schemes

Integration Variable = i Integration Variable = 8

Integration Variable = & Integration Variable = s

(Ry+ h) B (R + h)tan(B)
[1+1wmﬂB£| ST Reth)
B = 55—~ 1+
(R + h)tan(B) [ r cos(B) }
1
44 = R, + Wytan(e) do =g, n)7 %P
1+
[ r cos(B) }
1 (Ry+h)
ds = sin(B) dn B cos(B)
ds = —————= Bo+ 1)1
| + r cos(B) |
B 1 (Ry+h)
g = r sin(B) dn ~ rcos(p)
E=r R rm
L + r cos(B) |
_p (Ro + h)
M = sin(B) dn B P cos(B)
M= g, 179
{1 + r cos(B)]

dh = (R, + h)tan(p)dd dh = sin(B)ds

Ro+h) cos(B) 1
ap [1 , rCOS(B)]dd) ap - [(R0+h) . ;}ds
(Ry+h) cos(B)
= eos(p) 90 do = G &
_ Both) dE = dp — do = -d
dgircos(B)dd) £=dp ¢ =7ds
_ (Ry+h) dM = p ds
~ P cos(p)
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A. Integration by Height (h)

Choosing 4 as the integration variable (Table 1, col-
umn 1) introduces a 1/tan(B) dependence in df and
dé and a 1/sin(B) dependence in ds, d¢, and dM,
which makes them explode at the horizon: B = 0°.
Older work on refraction, see, e.g., Smart [6], uses
this method through the implicit dependence on A of
the refraction index. The well-known result is a di-
vergent series expansion in tan(z).

Kasten [1] and Link and Neuzil [2] remedied their
air mass integrals by making, in a limited region
above ground or sea level, a coordinate transforma-
tion and by retaining higher powers of 4. Kivalov [4]
cured the problem by modeling ray elements as circle
segments, thus explicitly bringing in the necessary
curvature of the ray by which the singularity is
avoided.

Integration by height has some further limitations:
For an observer at some height above ground or sea
level, the horizon and the region just above it are seen
at negative angles. A corresponding light ray must
then be followed in two steps: first from the observer
to its lowest point and second from this lowest point
upwards till typically 85 km above the Earth. In the
presence of a temperature inversion the ray may ex-
hibit one or more oscillations, making it necessary to
cut the path in even more parts. Integration by 4 is
therefore less suitable for the study of low-Sun phe-
nomena and mirages.

B. Integration by Altitude (B)

Choosing B as the integration variable (Table 1, col-
umn 2) makes ds, di, and dM singular in the zenith
(B = 90°). Usually this is not a real problem: in the
zenith s and & are trivially just the vertical distance
over which one chooses to integrate. Further, the air
mass is just the ratio of the atmospheric pressure
over the acceleration of gravity: M = P/g, at least
when the dependence of g on height is ignored. The
celebrated Auer—Standish [7] approach uses this
method: For a spherically symmetric atmosphere one
obtains, upon using Eq. (2a),

Ry + hydn/dh
€= 3 R, + hydnjdn ®

which is usually integrated by Simpson’s rule, finding
h at each step by Newton—Raphson iteration. This
method has been described in detail by Hohenkerk
and Sinclair [8] and by Seidelmann [9]. For each
integration step the ray’s horizontal displacement fol-
lows trivially from A = AR — A, thus in principle
making this method suitable for ray tracing.

For sunsets and in particular for mirages, ray
paths may be multiple-valued in B: They may have
alternating positive and negative slopes. As above,
for integration by &, one must then subdivide the ray
in parts of monotonic slope and perform the integra-
tion separately in each of these. This method has
been used by Young [10]. To our knowledge, integra-

tion by zenith angle has never been used for air
masses.

C. Integration by Distance along the Earth (x = Ryd)

Whereas trajectories of near-horizontal rays may
have alternating slopes, the horizontal distance from
the observer is monotonic: rays go either to the right
or to the left. There is no need to subdivide a trajec-
tory into parts with either positive or negative slope.
Therefore, integration by x = Ryd, the horizontal
distance away from the observer, or by the polar an-
gle ¢ itself (Table 1, column 3) is especially appropri-
ate for near-horizontal rays and in particular for the
study of mirages. It has been used extensively by
Lehn [11], who modeled ray elements as parabolic
segments. The same method was used by Bruton [12].
Van der Werf et al. [13,14] have used this scheme in
combination with fourth-order Runge-Kutta inte-
gration. Choosing x (or ¢) as the integration vari-
able makes ds, dh, and dM singular in the zenith
(B = 90°), which is not a real problem, as mentioned
above. I do not know of any study on air masses that
uses this scheme.

D. Integration by Path Length (s)

Choosing path length s itself as the integration vari-
able (Table 1, column 4) avoids all singularities be-
cause dh/ds, dB/ds, ddb/ds, d&¢/ds, and dM/ds are
well behaved everywhere, including the notorious
cases: the horizon and the zenith. Path length in-
creases monotonically and there is no need for split-
ting trajectories in up- and down-sloping intervals.
Integration by s has been used by Gutierrez et al. [15]
in a study of mirages. Their set of differential equa-
tions was derived from Fermat’s principle and differs
in form (not in physics) from the ones that I use in
this Comment.

3. Conclusion and Recommendation

The choice of & as the integration variable, which has
become the traditional scheme in air mass studies,
seems to be the least-fortunate option, and it has
given rise to elaborate efforts to cope with a singu-
larity at the horizon that does not exist in other
schemes. Instead, I consider integration by path
length as the most universally suitable and problem-
free method. The study of our atmosphere and the
distribution of its constituents and pollutants is of
immediate interest, and many more studies on air
masses and extinction integrals may be anticipated
in near future. Standard methods of proven robust-
ness and accuracy are naturally preferred. As an ex-
ample, a solution scheme that is based on the classic
fourth-order Runge—Kutta method, known for short
as RK4, is given below in the Appendix A. In this
scheme, refraction &, air mass M, and of course path
length s itself are path integrals. The integrations are
all performed in parallel. It is therefore trivial to add
more equations for path integrals. In particular, if
models are available, air masses for dry air, water
vapor, ozone, NO,, CO,, and aerosols may be obtained
separately.
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Appendix A: RK4 Integration Scheme

With reference to Fig. 1, the result for a single inte-
gration step is

Sy =8; + As, (Ala)
hy=hy+ (k1 + 2Ry 5 + 2k, 5 + k) 4)As/6, (Alb)
Be=B1+ (kg1 + 2kgs + 2kp 5+ kg 4)As/6, (Ale)
by = by + (kos + 2kgs + 2kys + kys)As/6, (Ald)
& =& + (kg1 + 2keo + 2k 5 + ke 4)As/6, (Ale)
My =M+ (Ry1 + 2k + 2Ry 5 + Ry a)As/6, (A1)

where for each quantity X = h, B, ¢, & M the &
coefficients are stepwise evaluated as

dX
kxy= ds ) (A2a)
sph1,Bb1
k = A2b
X277 ds| 1 1 1 T (A2D)
s1+§As,h1+§kh!1As,Bl+§ka,1As,¢1+§k¢y1As
k - A2
X3 ds 1 1 1 1 ’ (A2¢)
sl+§As,h1+§kh’2As,Bl+§k3,2As,¢1+§k¢y2As
dX
kxa=qq (A2d)
s11A8,hy+ky 3As,By+kp 348,01 +ky 308
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