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ABSTRACT: A mariner who takes the height of the sun or a star to find his position at sea, must correct his
observation for horizon dip. Throughout history, dip values have been tabulated based on the idealized assumption
of a perfectly flat sea. Literature on wave height correction for dip is scarce, especially in the Western part of the world
and suggested procedures are often conflicting or incorrect. We investigate the effect of wave height on the apparent
horizon for realistic wave height distributions by optical ray tracing methods and show that there are two eye height
corrections: one representing the apparent rise of the horizon itself and the second when sights are selectively taken
from wave crests. Tables and formulas for dip and horizon distance taking wave height into account are presented.
Copyright # 2015 Institute of Navigation.

INTRODUCTION

Finding one’s position - or rather position line – by
measuring the height of a celestial body, one must
use in some form, via tabulation or directly, the
cosine rule which states:

cos ZENð Þ ¼ sin LATð Þsin DECð Þ
þcos LATð Þcos DECð Þcos LHAð Þ (1)

where LAT is the observer’s latitude, DEC the
declination of the sun or star, LHA the local hour
angle, and ZEN the zenith angle of the heavenly
body.

When using a sextant, or in olden days, a cross-
staff, the mariner does not measure the zenith angle
but instead the height above the apparent horizon.
In the above formula he then wants to replace cos
(ZEN) by sin(ALT), where ALT is the celestial body’s
altitude, 90°-ZEN, but before doing so he must
correct his measured height for dip: the angular
distance by which the apparent horizon, "the rim of
heaven," is below the true horizontal.

With reference to Figure 1, let the observer’s
elevation above the flat sea be h0. Near-horizontal
light rays have a radius of curvature of normally
about 6× the Earth’s radius, R.

It is easily shown that in first approximation:

dip ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R=rð Þ 2h0

R

r
and without refraction; r→∞ :

dip ¼
ffiffiffiffiffiffiffi
2h0
R

r

Likewise it follows that the distance to the horizon
is given by:

dist: horizon ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h0R

1� R=r

s
and for straight rays :

dist: horizon ¼
ffiffiffiffiffiffiffiffiffiffiffi
2h0R

p
(3)

Navigators are used to reckoning dip in
arcminutes (′), and distances in nautical miles
(nm). The Earth’s radius is R=6356766m, and
ignoring the ray curvature one has:

dip ¼ 1′:93
ffiffiffiffiffi
h0

p
and

dist: horizon ¼ 1:93
ffiffiffiffiffi
h0

p
nm (4)

where the elevation above the water surface, h0,
stands in meters.
The fact that the multiplying factor, 1.93, is the

same in both cases comes as no surprise since one
minute of arc along a great circle equals a nautical
mile by definition.

(2)
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Since 2008 the Nautical Almanac [1] has based its
refraction and horizon dip tables on the so-called
Modified US1976 standard atmosphere [2], wherein
temperature and pressure at sea level have been
adopted as 10 °C and 1013.25hPa, respectively.
Horizontal and near-horizontal light rays then
possess a radius of curvature r=5.71 R and upon
inserting this into Eqs. (2) and (3), the expressions
in Eq. (4) modify into:

dip ¼ 1′:75
ffiffiffiffiffi
h0

p
and

dist: horizon ¼ 2:12
ffiffiffiffiffi
h0

p
nm (5)

Thus the effect of the light’s curvature is to lower
dip and at the same time to push the horizon farther
out. The tables of the Nautical Almanac are
consistent with the expressions in Eq. (5) and agree
also with older tabulations showing at most a
minimal difference in the second decimal of the
multiplying factors 1.75 and 2.12. The formulas of
Eq. (5) apply to a perfectly flat sea.
But waves shift the visible separation between sea

and sky upward. In the words of Henry Raper, in the
1857- and later editions of his book The practice of
Navigation and Nautical Astronomy [3]: "Since the
sea-horizon is formed by the eminences of the waves,
it should be higher in bad weather."
This is naively illustrated in Figure 2. The dashed

curve represents a light ray traced backward from
the sailor’s eye. It just skims the flat sea to the right
and thus defines what he sees as the horizon. With
waves present, the visual separation between water
and sky is raised: the solid curve that just passes
over the distant wave crests lies higher than the

dashed line. At the same time the apparent horizon
has come nearer.

Imagine that - not quite realistic but useful for the
sake of argument - all waves are equally high. Wave
height,H, is defined as the height difference between
a wave crest and an adjacent trough. Crests are
raised over the median or flat-sea surface by
approximately H/2. This is exactly the situation for
sinusoidal waves and still close for wind driven
waves where crests are narrower than troughs.
Ignoring the ship’s own up and down movement, or
averaging over it, this simplified model suggests that
Eq. (5) be replaced by:

dip ¼ 1′:75
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0 �H=2

p
and

dist: horizon ¼ 2:12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0 �H=2

p
nm (6)

Such is the advice, given by Krasavtsev and
Klyustin in their book "Nautical Astronomy" [4],
which is the English translation of the 1970 edition
of "Morehodnaya Astronomiya." The same
prescription is given by Kazanskii [5] in his book
"Terrestrial Refraction over Extended Water
Surfaces" (1966). In the later editions of the
Morehodnaya Astronomiya, 1978 and 1986, by
Krasavtsev alone [6, 7], this has been changed to
subtracting 1/3 of the wave height. The
recommendation is meant for big ships and eye
height is taken relative to the median sea level. In
all these cases, the proposed eye height corrections
appear to be empirical ones and they are presented
without derivation or reference.

In the ‘official’ nautical literature from the West,
we have not been able to locate any reference to the
effect of wave height, other than Raper’s above
mentioned remark. The modern Bowditch [8]
mentions the wave height correction in its glossary,
but fails to discuss it in the actual text.

For yachtsmen, eye height is already low and it is
common practice to take sights when the ship rides
the top of a wave, so one gets a better view of the
horizon. In books by yachtsmen, written for
yachtsmen, one encounters different opinions. Tom
Cunliffe [9] advises to add half a wave height,
because that is by how much the wave has lifted

Fig. 2– Waves raise the apparent horizon and bring it nearer.

Fig. 1– Schematic illustration of horizon dip and distance. In the
absence of refraction, the observer is in A’ and a light ray drawn
from his eye to the right skims the sea surface in B. Refraction
causes the ray to be curved downward and for the ray to still go
through the horizon at B, the observer will have to distance himself
backward to A. At the same time the downward tilt of the ray,
which is the horizon dip, has become less.
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you upward. John Karl [10] rightfully rejects this
procedure, because when on top of a wave, your
horizon will in turn be made up by other distant
waves. And he suggests to make no correction at all.

Without making any calculation yet, we can argue
that the correct procedure is to indeed reduce one’s
eye height by a fraction of the wave height, when
looking up dip from a tabulation, and that this
fraction should be even larger than half the
significant wave height.

In Figure 3, three scenarios are sketched: in the
middle a narrow channel of a perfectly flat sea
stretches out to the horizon and the observer is
situated 5m above it. To the left, waves are all of
the same height, rising 2m above median sea level
(a significant wave height of 4m). The apparent
horizon lies higher than it is seen above a flat sea
and the observer will wish to subtract half a wave
height from his usual eye height before entering his
dip tables, as suggested in Eq. (6).

To the right, wave heights follow a realistic
distribution that will be specified in the following
section, and have been randomly generated from this
distribution. Although 86% of them are lower than
the waves to the left, still 14% will be higher. Near
the horizon, waves cannot be distinguished
individually and it is the higher waves that
determine what is seen as the horizon, just as Henry
Raper formulated more than a century and a half
ago. The important thing to note here is that the
waves from the realistic distribution produce a
higher horizon than the waves to the left, which are
all of the same height.

Just by how much the horizon is raised is the topic
of the following sections, where we will also discuss
the scenario that the navigator will try to selectively
take his sight when riding a wave top.

REALISTIC WAVE HEIGHT DISTRIBUTIONS

Over the past half century wave analysis has
become a research topic of growing importance and
applicability. For the following we refer, without an
attempt at completeness, to the books of Tucker
and Pitt [11], Holthuijsen [12], Young [13], Groen
and Dorrestein [14] and to the "Guide to Wave
Analysis and Forecasting" of the WMO (World
Meteorological Organization) [15].
Non-composite wind-driven waves are found to

follow a Rayleigh distribution:

P Hð Þ ¼ 4H

H2
s

exp �2 H

Hs

� �2
" #

(7)

where Hs is the so-called significant wave height.
The probability of encountering a wave higher

than H, which is the definite integral from H to
infinity over P(H), is:

P wave height > Hð Þ ¼ exp �2 H=Hsð Þ2
h i

(8)

Based on this formula, significant wave height is
often identified with the average of the largest 30%
of the wave heights.
In the present work we are especially interested in

the height distribution of the wave crests above the
median sea level, which to a good approximation is
h=H/2. Its distribution is:

P hð Þ ¼ 2P 2hð Þ ¼ 16h

H2
s

exp �8
h

Hs

� �2
" #

(9)

In addition we will need an appropriate ‘random
number generator’ for this distribution function. By
analogy to the work of Box and Muller [16], who
present such an algorithm for a random normal
variate, Eq. (9) is found to be reproduced by:

Hs

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln rnd 1ð Þ½ �

p
(10)

where rnd(1) is a random number, taken from a
‘white’ distribution between 0 and 1.
Patterns of wind-driven waves depend on water

depth, wind speed, the undisturbed length of the
wind path, called the fetch, and the time during
which the waves build up under an unchanged wind,
the duration. In the present work we restrict
ourselves to a fully developed sea over deep water.
That is: we assume a fetch and duration long enough

Fig. 3– Illustration of the effect of wave height on dip. Left: all
waves are of equal height above the median sea level. Middle: flat
sea. Right: random wave heights from a realistic wave height
distribution and with the same significant wave height as the sea
to the left.
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for the wave height and length distributions to build
up to a steady pattern.
Groen and Dorrestein [14] show in their Diagram

1 that under these conditions the significant wave
height approaches Hs→0.24U2/g, where U is the
wind speed in m/sec, as measured at 10m above
sea level and g=9.81m/sec2 is the gravitational
acceleration. From the same diagram one finds that
the wave period, the time lapse between two
successive crests, tends to T→2πU/g. The same
diagram may also be found on p. 44 of ref. [15]. This
limit for T relies on the assumption that in the end,
the phase velocity of the waves, which is given by
C =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gL=2π

p
, will tend to equal the wind speed U,

and of course on the relation between wave period
and wave length, L=CT.
Putting all this together, one finds that the ratio

between the significant wave height and the wave
length, the steepness, approaches Hs/L→0.24/
2π =0.038=1/26.2, independent of wind speed.
Stated in a different way: on deep water and under

a constant wind blowing over a long enough stretch
of water for sufficient duration, the wave length
tends to 26× the significant wave height.
Plausible and elegant as this result may be, the

assumption that wind speed and wave velocity will
become equal remains an assumption and in the
available literature one can encounter different
limiting values for the steepness. Tucker and Pitt
[10] give 1/19.7 and from numbers given by
Holthuijsen [12] one gets 1/39.2. Pierson and
Moskowitz [17] obtain limits, also quoted in [12],
that give a steepness of 1/33.8. They use, however,
wind speeds measured at 19.5m instead of the more
conventional 10m above the water.

FINDING THE DISTRIBUTION OF DIP

The path of a near-horizontal light ray is given, to
very good approximation, by the equation [18]:

d2h=dx2 ¼ c ¼ 1=R� 1=r (11)

Here, h is the height above the median sea surface
and x is the distance traveled along it. The observer
is at x=0 and his eye height will be h0. R is the
Earth’s radius and r is the ray’s radius of curvature,
which may be considered constant as long as the ray
does not deviate too much from horizontal. For the
standard atmosphere, adopted by the Nautical
Almanac (10 °C, 1013.25hPa) we have r=5.71R.

With c constant, the solution of Eq. (11) is:

h ¼ h0 þ βxþ ½cx2 (12)

where β is the tilt angle of the ray at the observer’s
position. In the equation, β stands in radians, but it
may be rewritten to arcminutes by multiplying it
with a factor 60×180/π.

For a given value of Hs, the significant wave
height, we adopt a wave length L=26.2 Hs, in
accordance with the steepness as found from Groen
and Dorrestein [14]. The effect of choosing a different
steepness will be evaluated and discussed at a later
stage. With the algorithm of Eq. (10) we then adopt
a random wave height in each point x=nL, all
independent of one another, for n=1,2,...... Next, we
find the tilt β for each of these wave tops. The
highest, that is, the least negative value thus found
for β, defines the ray that just misses all the waves
and which therefore represents the visual separation

Fig. 4– Left: distributions of horizon dip for different significant wave heights as seen from a
fixed eye height of 15m above the median sea level. Right: distributions for an eye height of
15m above the actual water level, moving up and down with the waves.
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between water and sky. This procedure is then
repeated many times, typically one thousand to ten
thousand times, until a clear statistical distribution
of these β-values is achieved. Checks against full
ray tracing calculations with the methods described
in references [2] and [18] are in full agreement,
which justifies the use of the simpler but very much
faster method described above.

DIP DISTRIBUTIONS

Horizon dip distributions obtained in the above
described way are presented in Figure 4 for an eye
height of 15m. We distinguish two scenarios. First,
the eye height is kept fixed above the median sea
level, such as it would be for a flat sea. The
distributions are close to Gaussian and shift to the
right with increasing wave height. Waves are seen
to lift the apparent horizon and thus decrease dip.
The distributions exhibit a well-pronounced
maximum, which represents the most probable dip
value.

In the right hand panel of Figure 4 the
corresponding distributions are shown for the scenario
that the ship itself moves up and down with the full
amplitude of the waves. The procedure of ray tracing
is still the same but eye height is now chosen as:

h′0 ¼ h0 þ Hs

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln að Þ

p
:cos 2πb½ � (13)

where a and b are two independent rnd(1) random
numbers. The additional term is the Box-Muller
algorithm [16] for a random variate of normal
distribution and an rms-width equal toHs. The effect
of adding this Gaussian component to the eye height
is a broadening of the distributions, which does not
come as a surprise. The broadening does not alter
the peak positions of the distributions. This is
understandable, because they are just convolutions
of the original distribution with a Gaussian of mean
zero and the mean of a convolution equals the sum of
the means of the individual constituting
distributions.

It should be remarked here that a ship with a
bridge height of 15m, as chosen in the example of

Figure 4, is a pretty big ship and the up- and down
movement of eye height will be of lesser amplitude
than that of the water surface itself. The broadening
will thus be less than in the extreme case, shown in
the right panel of Figure 4, but the peak positions
will still remain unchanged.
Table 1, below, gives the most likely dip values for

wave heights up to 4m, which corresponds to a
strong breeze of 6 Bf.
The dip values for a flat sea, Hs =0m, are those

given in the Nautical Almanac [1]. Above, we
argued that, if all waves would come with the same
height, apparent dip would depend on wave height
as 1′.75

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0 � Hs=2

p
. It will be useful for practical

purposes to keep the formula in this form and find
the appropriate factor by which Hs should be
multiplied. As on average 14% of the many wave
crests that form the apparent horizon are higher
than Hs/2 above median sea level, it may be
anticipated that this factor will be greater than
½, as argued in the introduction. Indeed, we find
that multiplying by 0.72 gives a best overall fit.
The rule of thumb is then:

apparent dip ¼ 1′:75
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0 � 0:72Hs

p
(14)

Of course, this formula applies only as long as the
expression under the square root is positive. Under

Table 1—Most probable dip for eye height h0 and wave height Hs

h0 ↓;Hs→ 0m 0.5m 1.0m 1.5m 2.0m 2.5m 3.0m 3.5m 4.0m

2.5m 2′.8 2′.5 2′.3 2′.1 1′.8 1′.5 1′.1 0′.8 0′.4
5m 3′.9 3′.8 2′.6 3′.4 3′.3 3′.1 3′.0 2′.8 2′.6
7.5m 4′.8 4′.7 4′.5 4′.4 4′.3 4′.2 4′.1 3′.9 3′.8
10m 5′.5 5′.4 5′.3 5′.2 5′.1 5′.0 4′.9 4′.8 4′.7
15m 6′.8 6′.7 6′.6 6′.5 6′.4 6′.4 6′.3 6′.2 6′.1
20m 7′.8 7′.8 7′.7 7′.6 7′.5 7′.5 7′.4 7′.3 7′.3
25m 8′.8 8′.7 8′.6 8′.6 8′.5 8′.4 8′.4 8′.3 8′.3
Wind → 0 kn 8 kn 12 kn 14 kn 17 kn 19 kn 20 kn 22 kn 24 kn

Fig. 5– Residues of the difference between calculated most probable
dip values for fixed eye height and the approximation in Eq. (14).
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the more stringent condition that we limit ourselves
to h0>Hs, we find that Eq. (14) reproduces the
values of Table 1 well within the usual rounding-off
accuracy of 0′.1. This condition is met for all values
in the table, with the exception of the largest wave
heights at an eye height of 2.5m. The fit is shown
in Figure 5. It includes the data from Table 1 and
in addition the corresponding data for eye heights
at 12.5, 17.5, and 22.5m.

INFLUENCE OF THE CHOICE OF STEEPNESS

Our above calculations have been based on a wave
steepness of Hs/L=1/26.2, or a wave length 26.2
times the wave height, as found from the article of
Groen and Dorrestein [14]. Tucker and Pitt [11] give
19.7Hs for the wave length and from the work of
Holthuijsen [12] one finds 39.2Hs. These are the
extremes we have found from a non-exhaustive
literature search. The influence of this choice must
be discussed and we do this by way of two examples.
Table 2 gives apparent dip values for an eye height

of 15m and a significant wave height of 4m.
Compared with a flat sea, the apparent dip has
decreased by 0′.67 (Groen and Dorrestein). The
difference between the extreme choices of
Holthuijsen on the one hand and Tucker-Pitt on the

other is only 0′.06, between which the Groen-
Dorrestein value holds the middle. Randomizing
the wave length between the extremes 19.7Hs and
39.2Hs gives an apparent dip that comes to within
0′.01 from the Groen-Dorrestein value.

A second example is shown in Figure 6 for an eye
height of 2.5m, which produces an even more
dramatic decrease in dip, but with similar
agreement between the four different
parameterizations for wave length.

The conclusion seems justified that wave length,
according to the Groen-Dorrestein prescription is
an appropriate choice for evaluating the effect of
wave height on apparent dip. Randomizing wave
lengths around this value is probably even more
realistic and is shown to yield nearly identical dip
values.

DIP AS MEASURED FROM WAVE CRESTS. THE
YACHTSMAN

Above we have discussed the apparent height of
the horizon as it is seen from an eye height that is
fixed above the median sea level or moving up and
down with the waves. As long as the observer does
not pay attention to whether he is on a wave crest
or in a through, the effect of the up and down
movements of the waters averages out and the most
likely value for the apparent horizon dip is the same
as for a fixed eye height. A keen yachtsman will,
however, attempt to take his sight from the top of a
wave, so he can look farther and thus has a better
view on what appears to be his horizon.

The wave height distribution of wave crests above
median sea level is given by Eq. (9), and the average
height is easily found to be 0.31Hs. Thus, if the sailor
takes his sight from any arbitrary wave top, he
should adopt for his eye height h′0 ¼ h0 þ0:31Hs and
use a dip value:

apparent dip ¼ 1′:75
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0 þ 0:31Hs � 0:72Hs

p
¼ 1′:75

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0 � 0:41Hs

p
(15)

Not only does this procedure reduce the wave
height correction, the correction also becomes better
defined. This is illustrated in Figure 7, which shows
that the distributions of horizon dip get significantly
narrower by selectively taking one’s sights from a
wave top.

But one can do better: if our yachtsman does not
pick just any wave, but instead waits for the highest
of the next five that he sees coming, his effective eye
height will on average be h′0 ¼ h0 þ0:52Hs and his
apparent dip will be

Table 2—Dip for a fixed eye height of 15m upon different
choices for wave length

Hs
(m) L/Hs comment

apparent
dip

0 - flat sea 6′.78
4 39.2 Holthuijsen [12] 6′.15
4 19.7 Tucker and Pitt [11] 6′.09
4 26.2 Groen and Dorrestein [14] 6′.11
4 [19.7-39.2] random between 19.7 and 39.2 6′.12

Fig. 6– Apparent dip for 2.5m eye height, calculated with wave
lengths from Groen-Dorrestein [14], Holthuijsen [12], Tucker-Pitt
[11] and for wave length randomized between the values of refs.
[11] and [12].
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apparent dip ¼ 1′:75
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0 þ 0:52Hs � 0:72Hs

p
¼ 1′:75

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0 � 0:20Hs

p
(16)

If he wants to do better still, it would take picking
the highest out of about 40 waves to reach the break-
even point, where the two corrections cancel and he
may use his ’uncorrected’ eye height.

CONCLUDING REMARKS AND THE
FORMULATION OF A CONJECTURE

When taking the height of a celestial body above
the horizon, the navigator must correct his
measured height for horizon dip. Nautical
handbooks have, throughout history, tabulated dip
in an idealized form that supposes the sea to be
perfectly flat. Waves have the effect of raising the
apparent separation between water and sky. In this
work we have evaluated this effect quantitatively
for wind-driven waves over deep water and a fully
developed sea.

The eye height correction has two distinct
contributions. In the first place there is the apparent
rise of the horizon itself. It amounts to 0.72Hs and
this has to be subtracted from the eye height. The
other correction applies only to such cases where
sights are selectively taken from wave crests. This
is an additive correction to eye height and its value
depends on how many wave tops the navigator is
willing to let pass before picking the highest one. In
the above example, this gave a correction of 0.52Hs

for the highest out of five waves. The general result,
with a derivation of the relevant formula’s is given
in the appendix.

The difference with the flat-sea dip values may
easily be half or even a full arcminute and for small
ships more. Recent tabulations of, for example, the
Nautical Almanac, give the observables needed for
sight reduction to a precision of 0′.1, earlier editions
even to one arcsecond, and naval officers were
trained to work out their observations to this
accuracy. It is therefore remarkable that the much
larger effect that waves have on dip seems never to
have been considered, at least not in the West.
Today this matter is rather a historical curiosity

but the effect may be traced by studying old
logbooks. Consider a three-star fix as sketched in
Figure 8. The naval officer, or officers, take the

Fig. 7– Showing the improvement of taking sights from a wave top (right hand panel) over a
fixed eye height above median sea level (left hand panel).

Fig. 8– Three star position fixes, taken from a true position
indicated by the asterisk, where in A) the measured heights are
systematically too small and too large in B).
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heights of three stars and after sight reduction they
each draw a position line on the chart. The three
position lines enclose a triangle and after approval
by the captain, the center of this triangle is accepted
as their position. There are two possibilities: as seen
from the accepted center, the position lines may be
drawn on the same side as the stars, or on opposite
sides. We have shown in this work that apparent
dip in the presence of waves is smaller than the
tabulated dip values. Subtracting a too large dip
from the observed height will therefore give too
small a height and the position line will be drawn
too far backward from the star’s foot point on the
globe. This is the situation in panel A of Figure 8.
Panel B shows the opposite scenario, where the
deduced heights are too large.
We conjecture that a historian, whom it amuses to

review star fixes from old logbooks, will find that
statistically speaking triangles with the triangle
pointing downward, as in Figure 8A, occur more
often than the ones with the triangle pointing
upward.
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APPENDIX: Eye Height Correction for Sights
from Wave Tops

The distribution of wave heights is given in Eq. (7),
which we repeat here:

P Hð Þ ¼ 4H

H2
s

exp �2 H

Hs

� �2
" #

(A:1)

The probability of finding a wave height, not
exceeding H, is

P < Hð Þ ¼ 4

H2
s

∫
H

0
H ′ exp �2

H ′

Hs

� �2
" #

dH ′

¼ 1� exp �2 H

Hs

� �2
" #

(A:2)

Picking the highest out of a series of N waves, one
may build the distribution function of its height in a
straightforward way by combining Eq. (A.1) for the
highest wave with Eq. (A.2) for the remaining (N-1)
waves, adding a factor N for normalization. We shall
denote this probability P(H>H2,…,HN ) as PN(H) for
short.

PN Hð Þ ¼ N
4H

H2
s

exp �2 H
Hs

� �2
" #"

1- exp �2
H
Hs

� �2
" #N-1#

¼ N
4H

H2
s

XN�1

k¼0
�ð Þk N � 1

k

� �
exp �2 kþ 1ð Þ H

Hs

� �2
" #

(A:3)

This distribution is properly normalized as may be
verified by performing the (Poisson-) integrals and
evaluating the resulting sum.

∫
∞

0
PN Hð ÞdH ¼ N

XN�1

k¼0
N�1
k

� � �ð Þk
kþ 1ð Þ ¼ 1 (A:4)

The mean of the distribution is found to be:

Hh iN ¼ ∫
∞

0
HPN Hð ÞdH

¼ NHs

ffiffiffi
π
8

r XN�1

k¼0
N�1
k

� � �ð Þk
kþ 1ð Þ3=2

(A:5)

As discussed in the text, horizon dip should be
read from a tabulation at an effective eye height
h′=h0+<H>N/2 - 0.72Hs. The first correction,
<H>N/2, is half the height of the wave from which
the sight is taken. The second correction, 0.72Hs,
represents the apparent rise of the horizon for an
observer at a fixed height above median sea level
and it should be subtracted from one’s eye height.
Table A.1 below lists the first correction for the
largest out of a series of N waves for different N.

Table A.1. Additive wave height correction

N <H> N/2 (in units Hs)

1 0.31
2 0.41
3 0.46
4 0.49
5 0.52
10 0.59
20 0.66
50 0.74
100 0.80
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